Extended knowledge of 3,5-Dichloroisonicotinic acid

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 13958-93-5, 3,5-Dichloroisonicotinic acid, other downstream synthetic routes, hurry up and to see.

Application of 13958-93-5, Adding some certain compound to certain chemical reactions, such as: 13958-93-5, name is 3,5-Dichloroisonicotinic acid,molecular formula is C6H3Cl2NO2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 13958-93-5.

EXAMPLE 1A 3,5-Dichloroisonicotinamide A solution of 3,5-dichloro-isonicotinic acid (9.54 g, 49.6 mmol, commercially available form TCI) in benzene (100 mL) was treated with oxalyl chloride (8.7 mL), a catalytic amount of DMF (5 drops), stirred overnight at room temperature, and concentrated under reduced pressure. The residue was dissolved in diglyme (10 mL) and added dropwise to 35% NH2OH in water (150 mL). The mixture was filtered to provide 8.2 g of the title compound as a white powder. MS ((DCI (+)) m/e 190.9 (M+H)+.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 13958-93-5, 3,5-Dichloroisonicotinic acid, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Dai, Yujia; Hartandi, Kresna; Michaelides, Michael R.; US2006/178378; (2006); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The origin of a common compound about 6-Chloro-5-(trifluoromethyl)pyridin-3-amine

The chemical industry reduces the impact on the environment during synthesis 99368-68-0, I believe this compound will play a more active role in future production and life.

Reference of 99368-68-0, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.99368-68-0, name is 6-Chloro-5-(trifluoromethyl)pyridin-3-amine, molecular formula is C6H4ClF3N2, molecular weight is 196.5576, as common compound, the synthetic route is as follows.

(0876) Under ice-cooling, thionyl chloride (4 ml) was added dropwise over 20 minutes to water (27 ml). The mixture was stirred overnight for 12 hours to give a SO2 containing solution. Separately, Compound 288C (1.14 g) in dioxane (5 ml) was added to concentrated HCl (20 ml) at 0 C. The solution was stirred for 5 minutes. To this suspension/solution was added sodium nitrite (0.44 g) in water (6 ml) dropwise at 0 C. The solution was stirred at 0 C. for 3 hours. During this time, any solid formed was crushed with a glass rod to make sure that Compound 288C was completely reacted. To the SO2 containing solution was added copper(I) chloride (0.115 g). Then, to this solution was added the diazotized Compound 288C at 0 C. The solution was stirred for 30 minutes. The reaction mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with 5% ethyl acetate in hexanes to provide the title compound.

The chemical industry reduces the impact on the environment during synthesis 99368-68-0, I believe this compound will play a more active role in future production and life.

Reference:
Patent; AbbVie Inc.; Catron, Nathaniel; Lindley, David; Miller, Jonathan M.; Schmitt, Eric A.; Tong, Ping; US10213433; (2019); B2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 880870-13-3

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,880870-13-3, its application will become more common.

Electric Literature of 880870-13-3 ,Some common heterocyclic compound, 880870-13-3, molecular formula is C6H5BrClNO, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Step 1: Preparation of l-(4-(6-chloro-4-methoxypyri din-3 -yl)phenyl)pyrrolidin-2-one. [0794] A mixture of l-(4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)phenyl)pyrrolidin- 2-one (500 mg, 1.74 mmol), 5-bromo-2-chloro-4-methoxypyridine (387 mg, 1.74 mmol), Pd(dppf)Cl2 (127 mg, 0.174 mmol) and Na2C03 (554 mg, 5.22 mmol) in dioxane (6 mL) and water (1.5 mL) was degassed and purged w ith N2 for 3 times. And the resulting reaction mixture was stirred at 100 C for 2 hours under N2 atmosphere. A black suspension was formed. LCMS showed the purity of the desired product is 51% (Rt = 0.649 min; MS Calcd: 302.1; MS Found: 302.8 [M+H]+). The reaction mixture was diluted with water (10 mL). The aqueous layer was extracted with EtOAc (30 mL x3). The combined organic layer was washed with water (20 mL x2), brine (40 mL), dried over anhydrous Na2S04, filtered and concentrated under reduced pressure. The residue was purified by Combi Flash (20% to 60% EtOAc in PE) to give 1-(4- (6-chloro-4-methoxypyridin-3-yl)phenyl)pyrrolidin-2-one (450 mg, yield: 78%) as a yellow solid.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,880870-13-3, its application will become more common.

Reference:
Patent; PETRA PHARMA CORPORATION; LINDSTROeM, Johan; PERSSON, Lars Boukharta; VIKLUND, Jenny; KESICKI, Edward A.; HICKEY, Eugene R.; DAHLGREN, Markus K.; GERASYUTO, Aleksey I.; (450 pag.)WO2019/126731; (2019); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

A new synthetic route of 878197-68-3

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 878197-68-3, 5-Bromoimidazo[1,2-a]pyridine-2-carbaldehyde.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 878197-68-3, name is 5-Bromoimidazo[1,2-a]pyridine-2-carbaldehyde. This compound has unique chemical properties. The synthetic route is as follows. Recommanded Product: 878197-68-3

To a solution of Lambda/-methyl-5,6,7,8-tetrahydro-8-quinolinamine (500 mg, 3.1 mmol) and 5-bromoimidazo[1 ,2-a]pyridine-2-carbaldehyde (770 mg, 3.4 mmol) in dichloroethane (17 ml_) was added acetic acid (180 mul_, 3.1 mmol) and sodium triacetoxyborohydride (2.0 g, 9.3 mmol). The mixture was stirred at room temperature for 15 hours and then filtered through a silica plug and rinsed with 10% ammonium hydroxide- acetonitrile. The solvent was removed and the residue diluted with dichloromethane, washed with saturated aqueous sodium bicarbonate, and dried with magnesium sulfate to give 1.1 g (99% yield) of Lambda/-[(5-bromoimidazo[1 ,2-a]pyridin-2-yl)methyl]-Lambda/- methyl-5,6,7,8-tetrahydro-8-quinolinamine as an orange oil. 1H-NMR (CDCI3): delta 8.50 (d, 1H), 7.92 (s, 1 H), 7.49 (d, 1 H), 7.32 (d, 1 H), 7.03 (m, 2H), 6.96 (m, 1H), 4.09 (m, 1 H), 3.94 (s, 2H), 2.72 (m, 2H), 2.40 (s, 3H), 2.12 (m, 1H), 1.99 (m, 2H), 1.68 (m, 1H); MS m/z 372 (M+1).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 878197-68-3, 5-Bromoimidazo[1,2-a]pyridine-2-carbaldehyde.

Reference:
Patent; SMITHKLINE BEECHAM CORPORATION; WO2006/26703; (2006); A2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 153034-88-9

The synthetic route of 153034-88-9 has been constantly updated, and we look forward to future research findings.

Application of 153034-88-9 , The common heterocyclic compound, 153034-88-9, name is 2-Chloro-4-iodo-3-methylpyridine, molecular formula is C6H5ClIN, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

The mixture of 1.0 g of 2-chloro-4-iodo picoline, 84 mg of palladium acetate, 218 mg of 1,1′-bisdiphenylphosphino ferrocene, 990 mg of sodium hydrogen carbonate, 10 mL of N,N-dimethylformamide, and 10 ml of methanol, was stirred overnight in a carbon monoxide atmosphere at 80C. After cooling the reaction mixture back to room temperature, water and a saturated aqueous solution of sodium hydrogen carbonate were added thereto, and extracted with ethyl acetate. The organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate. The insolubles were filtered, the filtrate was concentrated under reduced pressure, and then the obtained residue was purified by silica gel column chromatography to obtain 522 mg of 2-chloro-3-methylisonicotinic acid methyl ester [48-1] as a colorless oily product.

The synthetic route of 153034-88-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; BANYU PHARMACEUTICAL CO., LTD.; EP1790650; (2007); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of Ethyl 2-chloronicotinate

According to the analysis of related databases, 1452-94-4, the application of this compound in the production field has become more and more popular.

Electric Literature of 1452-94-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 1452-94-4, name is Ethyl 2-chloronicotinate, molecular formula is C8H8ClNO2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

In a 500 mL dry round bottom flask with reflux condenser and magnetic stirrer was placed with 2-chloro-3-ethyl nicotinate (40.0 g, 215.5 mmol) in methanol (200 mL). CH3ONa in methanol (25%, 65 mL, 301.7 mmol) was added slowly and the reaction mixture was refluxed for 16 h. The reaction was cooled to rt, quenched by addition of a saturated aqueous NH4Cl solution. The aqueous mixture was extracted with ethyl acetate. The combined organic layers were washed well with water, brine, dried over Na2SO4 and concentrated to give 35 g of 2-methoxy-3-methyl nicotinate with 97% yield. Sodium hydride (60% in oil, 9.21 g, 230.3 mmol) was added to a dry 500 mL round bottom flask followed by 100 mL DMF. 4-Methoxyacetophenone (31.45 g, 209.44 mmol) in 50 mL dry DMF was added dropwise at 0 C. over 30 min. The reaction mixture was stirred for 1 h at rt. 2-Methoxynicotinic acid methyl ester (35 g, 209.44 mmol) was dissolved in 50 mL dry DMF and added slowly, keeping the temperature at 0 C. The mixture was stirred for 16 h at rt, then quenched by addition of a saturated aqueous NH4Cl solution and diluted with water. The solid was filtered off, washed with water and dried to give 56.7 g diketo product in 95% yield.

According to the analysis of related databases, 1452-94-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; RVX Therapeutics Inc.; McLure, Kevin G.; Young, Peter R.; US2013/281396; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 885168-04-7

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 885168-04-7, 5-Bromo-3-chloropicolinaldehyde.

Application of 885168-04-7, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 885168-04-7, name is 5-Bromo-3-chloropicolinaldehyde. This compound has unique chemical properties. The synthetic route is as follows.

Conc. sulfuric acid (5.0 mL) was added to an ice-cold (0C) mixture of 5-bromo-3-chloropicolinaldehyde(5 g, 22.7 mmol, 1 eq) and 3-butene-1-ol (4.1 mL, 45.5 mmol, 2 eq) and the mixture was stirred for 16 h at RT. The reaction mass was poured into crushed ice, neutralized by addition of solid NaHCO3, extracted with EtOAc (2×1 00 mL) and the organic layer was washed with brine (150 ml). Combined organic layer was dried over anhydr. Na2SO4, filtered and the solvent was evaporated under reduced pressure to get crude mass which was then purified by combiflash CC to afford 2-(5-bromo-3-chloropyridin-2-yl)tetra-hydro-2H-pyran-4-ol (1.1 g, 17%) as colorless oil.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 885168-04-7, 5-Bromo-3-chloropicolinaldehyde.

Reference:
Patent; GRUeNENTHAL GMBH; SCHUNK, Stefan; REICH, Melanie; JAKOB, Florian; DAMANN, Nils; HAURAND, Michael; KLESS, Achim; ROGERS, Marc; SUTTON, Kathy; WO2015/158427; (2015); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 61494-55-1

The synthetic route of 61494-55-1 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 61494-55-1, name is 2-(2-Chloropyridin-3-yl)acetic acid, the common compound, a new synthetic route is introduced below. SDS of cas: 61494-55-1

(Step 5) To a solution of the compound (3.40 g) obtained in step 4, N-benzylethanolamine (4.53 g) and HOBt·H2O (4.60 g) in DMF (50 mL) was added WSC·HCl (5.80 g), and the mixture was stirred at room temperature for 4 days. The reaction mixture was poured into water, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and brine, and concentrated. The residue was purified by silica gel column chromatography (solvent gradient; 80% ethyl acetate/hexane ? 2% methanol/ethyl acetate) to give N-benzyl-2-(2-chloropyridin-3-yl)-N-(2-hydroxyethyl)acetamide (6.20 g, 100%) as a pale-yellow oil. 1H-NMR(CDCl3): delta 3.49-3.98(6H,m), 4.69-4.71(2H,m), 7.20-7.46(6H,m), 7.63-7.69(1H,m), 8.30(1H,dd,J=4.8,1.8Hz)

The synthetic route of 61494-55-1 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Takeda Pharmaceutical Company Limited; EP2018863; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New learning discoveries about 2,6-Bis(benzyloxy)-3-bromopyridine

Statistics shows that 16727-47-2 is playing an increasingly important role. we look forward to future research findings about 2,6-Bis(benzyloxy)-3-bromopyridine.

Application of 16727-47-2, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.16727-47-2, name is 2,6-Bis(benzyloxy)-3-bromopyridine, molecular formula is C19H16BrNO2, molecular weight is 370.2398, as common compound, the synthetic route is as follows.

To the stirred solution of 2,6-bis(benzyloxy)-3-bromopyridine (16-1) (112.0 mg, 302 mumol) in Dioxane and water (7.5 mL) was added Pyridine-4-boronic acid 41-1 (42.1 mg, 453 mumol) and Potassium Phosphate (139 mg, 604 mumol). The reaction was degassed for 10 minutes and PdCl2(dppf)-DCM (24.6 mg, 30.2 mumol) was added. The reaction was refluxed at 90C for overnight. Reaction progress was monitored by TLC. Upon completion, the reaction was diluted with water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulphate and evaporated in vacuo. The product was purified by silica gel flash chromatography (4 g Isco gold, hexane/EtOAc 0-100%) to give 2,6-bis(benzyloxy)-3,4′-bipyridine (41-2) (90.0 mg, 244 mumol, 81.0 %) as a white solid. MS: ES+ 369.2

Statistics shows that 16727-47-2 is playing an increasingly important role. we look forward to future research findings about 2,6-Bis(benzyloxy)-3-bromopyridine.

Reference:
Patent; C4 THERAPEUTICS, INC.; PHILLIPS, Andrew, J.; NASVESCHUK, Chris, G.; HENDERSON, James, A.; LIANG, Yanke; HE, Minsheng; LAZARSKI, Kiel; VEITS, Gesine, Kerstin; VORA, Harit, U.; (794 pag.)WO2017/197046; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 769-54-0

The synthetic route of 769-54-0 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 769-54-0, name is 3-Fluoro-4-nitropyridine 1-oxide, the common compound, a new synthetic route is introduced below. Application In Synthesis of 3-Fluoro-4-nitropyridine 1-oxide

To a mixture suspension of 3-fluoro-4-nitropyridine 1-oxide (9.75 g, 61.7 mmol) and methanol (145 mL) was added 28% sodium methoxide methanol solution (11.9 g, 61.7 mmol) with cooling with ice. This mixture was heated to room temperature and stirred for 1 hour at the temperature. The methanol was distilled off under reduced pressure. Water (50 mL) was added to the residue, followed by extracting with chloroform. The organic layer was washed with brine, and anhydrous sodium sulfate was added to dry the layer. After anhydrous sodium sulfate was removed by filtration, the solvent was distilled off under reduced pressure to obtain 3-methoxy-4-nitropyridine 1-oxide (9.54 g; yield, 91%).

The synthetic route of 769-54-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; ISHIHARA SANGYO KAISHA, LTD.; KIRIYAMA, Kazuhisa; MATSUMOTO, Masahiro; YOSHIDA, Kotaro; BOLDBAATAR, DamdinSuren; JUKUROGI, Tatsuya; UMEMOTO, Nao; KANI, Tatsuya; MATSUDA, Yoko; TANAKA, Kumiko; KANUMA, Michiko; SHIMADA, Tatsuya; WO2014/98259; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem