Kampen, Stefanie team published research on Angewandte Chemie, International Edition in 2021 | 1603-41-4

1603-41-4, 2-Amino-5-methylpyridine, also known as 2-Amino-5-methylpyridine, is a useful research compound. Its molecular formula is C6H8N2 and its molecular weight is 108.14 g/mol. The purity is usually 95%.
2-Amino-5-methylpyridine is a chemical compound that belongs to the group of methyl ketones. It has a nitrogen atom and an oxygen atom in its structure, which allows it to form hydrogen bonds with other molecules. 2-Amino-5-methylpyridine can be obtained by reacting hydrochloric acid and xanthone in the presence of a base. The compound is highly reactive and has been shown to have antiinflammatory properties. This can be attributed to its ability to inhibit prostaglandin synthesis. 2-Amino-5-methylpyridine also has fluorescence properties that are sensitive to pH changes and can be used as a probe for metal ions. 2-Amino-5-methylpyridine is an organic compound that contains a methyl group, two nitrogen atoms, and one oxygen atom in its chemical structure. This molecule can form hydrogen bonds with other molecules due to its nitrogen atoms and oxygen atom,, COA of Formula: C6H8N2

Pyridine has a conjugated system of six π electrons that are delocalized over the ring. 1603-41-4, formula is C6H8N2, Name is 2-Amino-5-methylpyridine. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. COA of Formula: C6H8N2.

Kampen, Stefanie;Duy Vo, Duc;Zhang, Xiaoqun;Panel, Nicolas;Yang, Yunting;Jaiteh, Mariama;Matricon, Pierre;Svenningsson, Per;Brea, Jose;Loza, Maria Isabel;Kihlberg, Jan;Carlsson, Jens research published 《 Structure-Guided Design of G-Protein-Coupled Receptor Polypharmacology》, the research content is summarized as follows. Many diseases are polygenic and can only be treated efficiently with drugs that modulate multiple targets. However, rational design of compounds with multi-target profiles is rarely pursued because it is considered too difficult, in particular if the drug must enter the central nervous system. Here, a structure-based strategy to identify dual-target ligands of G-protein-coupled receptors is presented. We use this approach to design compounds that both antagonize the A2A adenosine receptor and activate the D2 dopamine receptor, which have excellent potential as antiparkinson drugs. Atomic resolution models of the receptors guided generation of a chem. library with compounds designed to occupy orthosteric and secondary binding pockets in both targets. Structure-based virtual screens identified ten compounds, of which three had affinity for both targets. One of these scaffolds was optimized to nanomolar dual-target activity and showed the predicted pharmacodynamic effect in a rat model of Parkinsonism.

1603-41-4, 2-Amino-5-methylpyridine, also known as 2-Amino-5-methylpyridine, is a useful research compound. Its molecular formula is C6H8N2 and its molecular weight is 108.14 g/mol. The purity is usually 95%.
2-Amino-5-methylpyridine is a chemical compound that belongs to the group of methyl ketones. It has a nitrogen atom and an oxygen atom in its structure, which allows it to form hydrogen bonds with other molecules. 2-Amino-5-methylpyridine can be obtained by reacting hydrochloric acid and xanthone in the presence of a base. The compound is highly reactive and has been shown to have antiinflammatory properties. This can be attributed to its ability to inhibit prostaglandin synthesis. 2-Amino-5-methylpyridine also has fluorescence properties that are sensitive to pH changes and can be used as a probe for metal ions. 2-Amino-5-methylpyridine is an organic compound that contains a methyl group, two nitrogen atoms, and one oxygen atom in its chemical structure. This molecule can form hydrogen bonds with other molecules due to its nitrogen atoms and oxygen atom,, COA of Formula: C6H8N2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Kalaramna, Pratibha team published research on European Journal of Organic Chemistry in 2021 | 16133-25-8

Category: pyridine-derivatives, Pyridine-3-sulfonyl chloride is a useful research compound. Its molecular formula is C5H4ClNO2S and its molecular weight is 177.61 g/mol. The purity is usually 95%.
Pyridine-3-sulfonyl chloride is a reagent used in the synthesis of pyrimidine derivatives with anti-proliferative activity against negative breast cancer cells.
Pyridine-3-sulfonyl chloride is a chemical compound that binds to the active site of cytochrome P450 enzymes. It can be used to study the effects of matrix effect on reaction solution. Pyridine-3-sulfonyl chloride has been shown to have an UV absorption spectrum with a maximum at 280 nm and a p450 activity that is proportional to the concentration of human serum. This compound has been shown to inhibit kinase domain in vitro assays, which may have clinical relevance in the treatment of obesity., 16133-25-8.

Pyridine is colorless, but older or impure samples can appear yellow. 16133-25-8, formula is C5H4ClNO2S, Name is Pyridine-3-sulfonyl chloride. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. Category: pyridine-derivatives.

Kalaramna, Pratibha;Goswami, Avijit research published 《 Temperature-Controlled Chemoselective Synthesis of Thiosulfonates and Thiocyanates: Novel Reactivity of KXCN (X = S, Se) towards Organosulfonyl Chlorides》, the research content is summarized as follows. An efficient chemoselective protocol has been developed for the synthesis of thiosulfonates RS(O)2SR (R = Me, CF3, Ph, thiophen-2-yl, etc.) and thiocyanates R1SCN (R1 = 2-ClC6H4, 3-pyridyl, 1H-indol-3-yl, etc.) by employing cost effective and com. available organosulfonyl chlorides RSO2Cl and R1SO2Cl with potassium thio-/selenocyanate. The strategy offered the thiosulfonates and thiocyanates selectively by tuning the equivalent of KSeCN and optimizing the reaction temperature On the other hand, thiosulfonates were obtained as sole products when organosulfonyl chlorides were treated with KSCN. Furthermore, the synthesis of phenyl(2,4,6-trimethoxyphenyl)sulfane and aryl(heteroaryl) thioethers I (R1 = Ph, 4-methylphenyl, 3-cyanophenyl, 5H,6H,7H-cyclopenta[c]pyridin-3-yl) was carried out as a part of synthetic application of newly prepared arylthiocyanates.

Category: pyridine-derivatives, Pyridine-3-sulfonyl chloride is a useful research compound. Its molecular formula is C5H4ClNO2S and its molecular weight is 177.61 g/mol. The purity is usually 95%.
Pyridine-3-sulfonyl chloride is a reagent used in the synthesis of pyrimidine derivatives with anti-proliferative activity against negative breast cancer cells.
Pyridine-3-sulfonyl chloride is a chemical compound that binds to the active site of cytochrome P450 enzymes. It can be used to study the effects of matrix effect on reaction solution. Pyridine-3-sulfonyl chloride has been shown to have an UV absorption spectrum with a maximum at 280 nm and a p450 activity that is proportional to the concentration of human serum. This compound has been shown to inhibit kinase domain in vitro assays, which may have clinical relevance in the treatment of obesity., 16133-25-8.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Jumde, Ravindra P. team published research on Chemical Science in 2021 | 31181-90-5

Safety of 5-Bromopicolinaldehyde, 5-Bromopyridine-2-carbaldehyde is a useful research compound. Its molecular formula is C6H4BrNO and its molecular weight is 186.01 g/mol. The purity is usually 95%.

5-Bromopyridine-2-carbaldehyde is a water soluble organic molecule that has been shown to inhibit the mitochondrial respiratory chain. It is a structural analog of the natural substrate for mitochondrial cytochrome c oxidase, 5-aminolevulinic acid. This compound has been shown to be selective against cancer cells and has anti-viral properties. The photophysical properties of 5-bromopyridine-2-carbaldehyde have been studied extensively. The fluorescence quantum yield of this molecule in aqueous solution is 0.06%., 31181-90-5.

Pyridine is diamagnetic and has a diamagnetic susceptibility of −48.7 × 10−6 cm3·mol−1.The molecular electric dipole moment is 2.2 debyes. 31181-90-5, formula is C6H4BrNO, Name is 5-Bromopicolinaldehyde. TThe standard enthalpy of formation is 100.2 kJ·mol−1 in the liquid phase and 140.4 kJ·mol−1 in the gas phase. Safety of 5-Bromopicolinaldehyde.

Jumde, Ravindra P.;Guardigni, Melissa;Gierse, Robin M.;Alhayek, Alaa;Zhu, Di;Hamid, Zhoor;Johannsen, Sandra;Elgaher, Walid A. M.;Neusens, Philipp J.;Nehls, Christian;Haupenthal, Joerg;Reiling, Norbert;Hirsch, Anna K. H. research published 《 Hit-optimization using target-directed dynamic combinatorial chemistry: development of inhibitors of the anti-infective target 1-deoxy-D-xylulose-5-phosphate synthase》, the research content is summarized as follows. Target-directed dynamic combinatorial chem. (tdDCC) enables identification, as well as optimization of ligands for un(der)explored targets such as the anti-infective target 1-deoxy-D-xylulose-5-phosphate synthase (DXPS). We report the use of tdDCC to first identify and subsequently optimize binders/inhibitors of the anti-infective target DXPS. The initial hits were also optimized for their antibacterial activity against E. coli and M. tuberculosis during subsequent tdDCC runs. Using tdDCC, we were able to generate acylhydrazone-based inhibitors of DXPS. The tailored tdDCC runs also provided insights into the structure-activity relationship of this novel class of DXPS inhibitors. The competition tdDCC runs provided important information about the mode of inhibition of acylhydrazone-based inhibitors. This approach holds the potential to expedite the drug-discovery process and should be applicable to a range of biol. targets.

Safety of 5-Bromopicolinaldehyde, 5-Bromopyridine-2-carbaldehyde is a useful research compound. Its molecular formula is C6H4BrNO and its molecular weight is 186.01 g/mol. The purity is usually 95%.

5-Bromopyridine-2-carbaldehyde is a water soluble organic molecule that has been shown to inhibit the mitochondrial respiratory chain. It is a structural analog of the natural substrate for mitochondrial cytochrome c oxidase, 5-aminolevulinic acid. This compound has been shown to be selective against cancer cells and has anti-viral properties. The photophysical properties of 5-bromopyridine-2-carbaldehyde have been studied extensively. The fluorescence quantum yield of this molecule in aqueous solution is 0.06%., 31181-90-5.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Juillet, Charlotte team published research on Journal of Medicinal Chemistry in 2021 | 1603-41-4

Name: 2-Amino-5-methylpyridine, 2-Amino-5-methylpyridine, also known as 2-Amino-5-methylpyridine, is a useful research compound. Its molecular formula is C6H8N2 and its molecular weight is 108.14 g/mol. The purity is usually 95%.
2-Amino-5-methylpyridine is a chemical compound that belongs to the group of methyl ketones. It has a nitrogen atom and an oxygen atom in its structure, which allows it to form hydrogen bonds with other molecules. 2-Amino-5-methylpyridine can be obtained by reacting hydrochloric acid and xanthone in the presence of a base. The compound is highly reactive and has been shown to have antiinflammatory properties. This can be attributed to its ability to inhibit prostaglandin synthesis. 2-Amino-5-methylpyridine also has fluorescence properties that are sensitive to pH changes and can be used as a probe for metal ions. 2-Amino-5-methylpyridine is an organic compound that contains a methyl group, two nitrogen atoms, and one oxygen atom in its chemical structure. This molecule can form hydrogen bonds with other molecules due to its nitrogen atoms and oxygen atom,, 1603-41-4.

The critical parameters of pyridine are pressure 6.70 MPa, temperature 620 K and volume 229 cm3·mol−1. 1603-41-4, formula is C6H8N2, Name is 2-Amino-5-methylpyridine. In the temperature range 340–426 °C its vapor pressure p can be described with the Antoine equation.. Name: 2-Amino-5-methylpyridine.

Juillet, Charlotte;Ermolenko, Ludmila;Boyarskaya, Dina;Baratte, Blandine;Josselin, Beatrice;Nedev, Hristo;Bach, Stephane;Iorga, Bogdan I.;Bignon, Jerome;Ruchaud, Sandrine;Al-Mourabit, Ali research published 《 From Synthetic Simplified Marine Metabolite Analogues to New Selective Allosteric Inhibitor of Aurora B Kinase》, the research content is summarized as follows. Significant inhibition of Aurora B was achieved by the synthesis of simplified fragments of benzosceptrins and oroidin belonging to the marine pyrrole-2-aminoimidazoles metabolites isolated from sponges. Evaluation of kinase inhibition enabled the discovery of a synthetically accessible rigid acetylenic structural analog EL-228, whose structure could be optimized into the potent CJ2-150. Here we present the synthesis of new inhibitors of Aurora B kinase, which is an important target for cancer therapy through mitosis regulation. The biol. oriented synthesis yielded several nanomolar inhibitors. The optimized compound CJ2-150 showed a non-ATP competitive allosteric mode of action in a mixed-type inhibition for Aurora B kinase. Mol. docking identified a probable binding mode in the allosteric site “F” and highlighted the key interactions with the protein. We describe the improvement of the inhibitory potency and specificity of the novel scaffold as well as the characterization of the mechanism of action.

Name: 2-Amino-5-methylpyridine, 2-Amino-5-methylpyridine, also known as 2-Amino-5-methylpyridine, is a useful research compound. Its molecular formula is C6H8N2 and its molecular weight is 108.14 g/mol. The purity is usually 95%.
2-Amino-5-methylpyridine is a chemical compound that belongs to the group of methyl ketones. It has a nitrogen atom and an oxygen atom in its structure, which allows it to form hydrogen bonds with other molecules. 2-Amino-5-methylpyridine can be obtained by reacting hydrochloric acid and xanthone in the presence of a base. The compound is highly reactive and has been shown to have antiinflammatory properties. This can be attributed to its ability to inhibit prostaglandin synthesis. 2-Amino-5-methylpyridine also has fluorescence properties that are sensitive to pH changes and can be used as a probe for metal ions. 2-Amino-5-methylpyridine is an organic compound that contains a methyl group, two nitrogen atoms, and one oxygen atom in its chemical structure. This molecule can form hydrogen bonds with other molecules due to its nitrogen atoms and oxygen atom,, 1603-41-4.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Joseph, Mohammed Cassiem team published research on Applied Organometallic Chemistry in 2020 | 5315-25-3

Name: 2-Bromo-6-methylpyridine, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Name: 2-Bromo-6-methylpyridine.

Joseph, Mohammed Cassiem;Swarts, Andrew John;Mapolie, Selwyn Frank research published 《 Palladium (II) complexes chelated by 1-substituted-4-pyridyl-1H-1,2,3-triazole ligands as catalyst precursors for selective ethylene dimerization》, the research content is summarized as follows. A series of neutral as well as cationic palladium Me complexes bearing 1-substituted-4-pyridyl-1H-1,2,3-triazole ligands were prepared and fully characterized by a range of anal. techniques. Conventional and 2D NMR spectroscopy as well as single-crystal X-ray diffraction anal. unambiguously determined the mol. structure of the complexes. The neutral complexes activated by methylaluminoxane were found to be effective catalysts in the ethylene dimerization reaction. The catalyst performance of the in-situ-generated active species was compared with the discrete cationic complexes of the same ligand scaffold. Activities and selectivities for the two systems were remarkably similar, pointing to similarities in the nature of the active species. Both catalytic systems showed a strong correlation of activity and selectivity with the nature of the ligand scaffold. Highest activities were attained when electron-withdrawing groups were incorporated into the triazole ring, while increasing steric bulk in the ortho-position on the pyridyl ring of the ligand led to the almost exclusive dimerization of ethylene with selectivities up to 94% observed toward 1-butene.

Name: 2-Bromo-6-methylpyridine, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Jing, Hua-qing team published research on Tetrahedron Letters in 2020 | 5315-25-3

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Name: 2-Bromo-6-methylpyridine

In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. For this reason, pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Name: 2-Bromo-6-methylpyridine.

Jing, Hua-qing;Li, Hong-liang;Antilla, Jon C. research published 《 Acylation of 2-benzylpyridine N-oxides and subsequent in situ [3,3]-sigmatropic rearrangement reaction》, the research content is summarized as follows. An effective method for the acylation of 2-benzylpyridine N-oxides and their fast in situ [3,3]-sigmatropic rearrangement was reported. This transformation has a wide substrate scope under mild conditions, giving moderate to excellent yields. The application for the synthesis of chiral phenyl-2-pyridylmethanol products was briefly explored. Furthermore, an interesting example of tandem substitution and in situ [3,3]-sigmatropic rearrangement of 2-benzylpyridine N-oxide with benzenecarboximidoyl chloride was reported.

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., Name: 2-Bromo-6-methylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Jin, Shengfei team published research on Journal of the American Chemical Society in 2020 | 766-11-0

Computed Properties of 766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Pyridine is colorless, but older or impure samples can appear yellow. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. Computed Properties of 766-11-0.

Jin, Shengfei;Dang, Hang. T.;Haug, Graham C.;He, Ru;Nguyen, Viet D.;Nguyen, Vu T.;Arman, Hadi D.;Schanze, Kirk S.;Larionov, Oleg V. research published 《 Visible Light-Induced Borylation of C-O, C-N, and C-X Bonds》, the research content is summarized as follows. Aryl phosphates, arylammonium salts and aryl halides were borylated with B2pin2 in photochem. substitution reaction catalyzed by phenothiazines, yielding aryl pinacolboranes and aryltrifluoroborates. Boronic acids are centrally important functional motifs and synthetic precursors. Visible light-induced borylation may provide access to structurally diverse boronates, but a broadly efficient photocatalytic borylation method that can effect borylation of a wide range of substrates, including strong C-O bonds, remains elusive. Herein, we report a general, metal-free visible light-induced photocatalytic borylation platform that enables borylation of electron-rich derivatives of phenols and anilines, chloroarenes, as well as other haloarenes. The reaction exhibits excellent functional group tolerance, as demonstrated by the borylation of a range of structurally complex substrates. Remarkably, the reaction is catalyzed by phenothiazine, a simple organic photocatalyst with MW < 200 that mediates the previously unachievable visible light-induced single electron reduction of phenol derivatives with reduction potentials as neg. as approx. – 3 V vs. SCE by a proton-coupled electron transfer mechanism. Mechanistic studies point to the crucial role of the photocatalyst-base interaction.

Computed Properties of 766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Jiao, Bo team published research on European Journal of Organic Chemistry in 2019 | 766-11-0

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Quality Control of 766-11-0

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Quality Control of 766-11-0.

Jiao, Bo;Peng, Zhen;Dai, Zhen-Hua;Li, Lei;Wang, He;Zhou, Ming-Dong research published 《 Palladium-Catalyzed meta-Selective C-H Alkenylation and Acetoxylation of Arylacetic Acid Using a Pyrimidine Template》, the research content is summarized as follows. In the presence of Pd(OAc)2 and N-acetylglycine, pyrimidinylphenyl esters of arylacetic acids such as I underwent regioselective meta-selective alkenylation reactions with electron-deficient alkenes such as Et acrylate mediated by Ag2CO3 in hexafluoroisopropanol to yield alkenylarylacetate esters such as II. Using PhI(OAc)2 as oxidant and Ac2O, four of the pyrimidinylphenyl esters underwent regioselective acetoxylation to yield acetoxyphenylacetates. The pyrimidinylphenyl moiety was readily removable from the products and recovered.

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Quality Control of 766-11-0

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Jiang, Youshu team published research on Polymer in 2022 | 1603-41-4

1603-41-4, 2-Amino-5-methylpyridine, also known as 2-Amino-5-methylpyridine, is a useful research compound. Its molecular formula is C6H8N2 and its molecular weight is 108.14 g/mol. The purity is usually 95%.
2-Amino-5-methylpyridine is a chemical compound that belongs to the group of methyl ketones. It has a nitrogen atom and an oxygen atom in its structure, which allows it to form hydrogen bonds with other molecules. 2-Amino-5-methylpyridine can be obtained by reacting hydrochloric acid and xanthone in the presence of a base. The compound is highly reactive and has been shown to have antiinflammatory properties. This can be attributed to its ability to inhibit prostaglandin synthesis. 2-Amino-5-methylpyridine also has fluorescence properties that are sensitive to pH changes and can be used as a probe for metal ions. 2-Amino-5-methylpyridine is an organic compound that contains a methyl group, two nitrogen atoms, and one oxygen atom in its chemical structure. This molecule can form hydrogen bonds with other molecules due to its nitrogen atoms and oxygen atom,, Recommanded Product: 2-Amino-5-methylpyridine

Pyridine is colorless, but older or impure samples can appear yellow. 1603-41-4, formula is C6H8N2, Name is 2-Amino-5-methylpyridine. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. Recommanded Product: 2-Amino-5-methylpyridine.

Jiang, Youshu;Zhang, Wenjuan;Han, Mingyang;Wang, Xing;Solan, Gregory A.;Wang, Rui;Ma, Yanping;Sun, Wen-Hua research published 《 Phenoxy-imine/-amide aluminum complexes with pendant or coordinated pyridine moieties: Solvent effects on structural type and catalytic capability for the ROP of cyclic esters》, the research content is summarized as follows. Depending on the solvent employed, the dimeric aluminum phenoxyamide complexes [2-O,4-R4C6H3CHMeN(3′-R1,4′-R2,5′-R3C5HN)]2Al2Me2 (R1 = Me, R2 = R3 = R4 = H Al1; R2 = Me, R1 = R3 = R4 = H Al2; R3 = Me, R1 = R2 = R4 = H Al3; R1 = R2 = R3 = R4 = H Al4; R1 = Me, R4 = OMe, R2 = R3 = H Al5). Or their monoaluminum phenoxyimine counterparts [2-O-C6H4CH = N(3′-R1,4′-R25′-R3C5HN)]AlMe2 (R1 = Me, R2 = R3 = H Al6; R2 = Me, R1 = R3 = H Al7; R3 = Me, R1 = R2 = H Al8; R1 = R2 = R3 = H Al9), were obtainable by the treatment of the corresponding 2-pyridyl substituted salicylaldimine pro-ligand with AlMe3. Structural characterization of Al1 – Al4 highlights the Npy,N,O-chelation and bridging capacity of the dianionic pyridyl substituted phenoxyamide ligand. By contrast, the monoanionic phenoxyimine ligand in Al8 serves as an N,O-bidentate ligand with the Npy unit pendant. In the presence of benzyl alc. (BnOH), all nine complexes exhibited high efficiency for the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL), in which the activity displayed by dinuclear Al1 – Al5 in general exceeding that seen by mononuclear Al6 – Al9. Anal. of the polycaprolactone (PCL) generated using Al1/BnOH by 1H NMR spectroscopy and MALDI-TOF mass spectrometry showed the polymer to adopt mainly a linear structure with BnO groups constituting the end groups. By contrast, when Al1 was used in the absence of BnOH, the PCL was mainly cyclic in nature. For the ROP of L-LA or rac-LA good efficiency was again achieved albeit at a lower level than that seen for ε-CL. In common with that seen with ε-CL, the amount of BnOH employed proved crucial in determining both the linearity and end group composition of the polylactide (PLA).

1603-41-4, 2-Amino-5-methylpyridine, also known as 2-Amino-5-methylpyridine, is a useful research compound. Its molecular formula is C6H8N2 and its molecular weight is 108.14 g/mol. The purity is usually 95%.
2-Amino-5-methylpyridine is a chemical compound that belongs to the group of methyl ketones. It has a nitrogen atom and an oxygen atom in its structure, which allows it to form hydrogen bonds with other molecules. 2-Amino-5-methylpyridine can be obtained by reacting hydrochloric acid and xanthone in the presence of a base. The compound is highly reactive and has been shown to have antiinflammatory properties. This can be attributed to its ability to inhibit prostaglandin synthesis. 2-Amino-5-methylpyridine also has fluorescence properties that are sensitive to pH changes and can be used as a probe for metal ions. 2-Amino-5-methylpyridine is an organic compound that contains a methyl group, two nitrogen atoms, and one oxygen atom in its chemical structure. This molecule can form hydrogen bonds with other molecules due to its nitrogen atoms and oxygen atom,, Recommanded Product: 2-Amino-5-methylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Jiang, Xingyu team published research on Journal of the American Chemical Society in 2018 | 766-11-0

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Synthetic Route of 766-11-0

Pyridine has a conjugated system of six π electrons that are delocalized over the ring. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. Synthetic Route of 766-11-0.

Jiang, Xingyu;Boehm, Philip;Hartwig, John F. research published 《 Stereodivergent Allylation of Azaaryl Acetamides and Acetates by Synergistic Iridium and Copper Catalysis》, the research content is summarized as follows. We report stereodivergent allylic substitution reactions of allylic esters with prochiral enolates derived from azaaryl acetamides and acetates to form products from addition of the enolates at the most substituted carbon of an allyl moiety with two catalysts, a chiral metallacyclic iridium complex and a chiral bisphosphine-ligated copper(I) complex, which individually control the configuration of the electrophilic and nucleophilic carbon atoms, resp. By simple permutations of enantiomers of the two catalysts, all four stereoisomers I, II, III, and IV of products containing two stereogenic centers were synthesized individually with high diastereoselectivity and enantioselectivity. A variety of azaaryl acetamides and acetates bearing pyridyl, benzothiazolyl, benzoxazolyl, pyrazinyl, quinolinyl and isoquinolinyl moieties were all found to be suitable for this transformation.

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Synthetic Route of 766-11-0

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem