Queyriaux, Nicolas’s team published research in Dalton Transactions in 2019 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Category: pyridine-derivatives Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Category: pyridine-derivativesIn 2019 ,《Mechanistic insights on the non-innocent role of electron donors: reversible photocapture of CO2 by RuII-polypyridyl complexes》 appeared in Dalton Transactions. The author of the article were Queyriaux, Nicolas; Swords, Wesley B.; Agarwala, Hemlata; Johnson, Ben A.; Ott, Sascha; Hammarstroem, Leif. The article conveys some information:

The ability of [RuII(tButpy)(dmbpy)(MeCN)]2+ (1-MeCN) to capture CO2, with the assistance of triethanolamine (TEOA), has been assessed under photocatalytically-relevant conditions. The photolability of 1-MeCN has proven essential to generate a series of intermediates which only differ by the nature of their monodentate ligand. In DMF, ligand photoexchange of 1-MeCN to give [RuII(tButpy)(dmbpy)(DMF)]2+ (1-DMF) proceeds smoothly with a quantum yield of 0.011. However, in the presence of TEOA, this process was disrupted, leading to the formation of a mixture of 1-DMF and [RuII(tButpy)(dmbpy)(TEOA)]+ (1-TEOA). An equilibrium constant of 3 was determined Interestingly, 1-TEOA demonstrated an ability to reversibly catch and release CO2 making it a potentially crucial intermediate towards CO2 reduction4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Category: pyridine-derivatives) was used in this study.

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Category: pyridine-derivatives Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Li, Bin’s team published research in Journal of Molecular Structure in 2019 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine derivatives lend themselves to many roles in the spirited field of supramolecular chemistry – whether as the ligand backbone of metal-organic polymers or presiding over the key electronic stations of nanodevices. In biochemistry, pyridine-containing cofactors are necessary nutrients on which our lives depend. Application of 1122-54-9

Application of 1122-54-9In 2019 ,《The positional isomeric effects induced various phosphorescence: Switchable properties through acid-base vapor stimulation》 appeared in Journal of Molecular Structure. The author of the article were Li, Bin; Yong, Guoping. The article conveys some information:

Three novel positional isomers, namely (E)-3-(2-chloroimidazo[1,2-a]pyridin-3-yl)-1-(pyridin-2-yl)prop-2-en-1-one , (E)-3-(2-chloroimidazo[1,2-a]pyridin-3-yl)-1-(pyridin-3-yl)prop-2-en-1-one and (E)-3-(2-chloroimidazo[1,2-a]pyridin-3-yl)-1-(pyridin-4-yl)prop-2-en-1-one, were obtained through a mild approach. Powder x-ray diffraction patterns demonstrate their various stacking structures, attributed to positional isomeric effects. Furthermore, these positional isomers exhibit different phosphorescent colors and quantum yields. These positional isomers also reveal reversible phosphorescent color switching in the response to acid-base vapor stimuli. The present work provides a promising approach for synthesizing organic materials and a new access to develop dynamic functional materials which can be reversibly switched between different phosphorescence based on external acid-base vapor stimuli. In the part of experimental materials, we found many familiar compounds, such as 4-Acetylpyridine(cas: 1122-54-9Application of 1122-54-9)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine derivatives lend themselves to many roles in the spirited field of supramolecular chemistry – whether as the ligand backbone of metal-organic polymers or presiding over the key electronic stations of nanodevices. In biochemistry, pyridine-containing cofactors are necessary nutrients on which our lives depend. Application of 1122-54-9

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Dorokhov, Valentin S.’s team published research in Organic Letters in 2021 | CAS: 13534-97-9

6-Bromopyridin-3-amine(cas: 13534-97-9) belongs to anime. Amine, any member of a family of nitrogen-containing organic compounds that is derived, either in principle or in practice, from ammonia (NH3). Naturally occurring amines include the alkaloids, which are present in certain plants; the catecholamine neurotransmitters (i.e., dopamine, epinephrine, and norepinephrine); and a local chemical mediator, histamine, that occurs in most animal tissues.Electric Literature of C5H5BrN2

Electric Literature of C5H5BrN2In 2021 ,《Modular Approach to Substituted Pyridoazepinones》 appeared in Organic Letters. The author of the article were Dorokhov, Valentin S.; Zard, Samir Z.. The article conveys some information:

Pyridoazepinones are potentially interesting structures, yet they are still underexploited in the medicinal chem. field and hard to obtain synthetically. Here, a general and flexible synthetic route to substituted pyridoazepinones, enabled by the xanthate addition-transfer process, which furnishes the target mols. from readily available starting materials in generally good yields is presented. The method shows good functional group tolerance and allows the preparation of pyridoazepinone scaffolds on gram scale. After reading the article, we found that the author used 6-Bromopyridin-3-amine(cas: 13534-97-9Electric Literature of C5H5BrN2)

6-Bromopyridin-3-amine(cas: 13534-97-9) belongs to anime. Amine, any member of a family of nitrogen-containing organic compounds that is derived, either in principle or in practice, from ammonia (NH3). Naturally occurring amines include the alkaloids, which are present in certain plants; the catecholamine neurotransmitters (i.e., dopamine, epinephrine, and norepinephrine); and a local chemical mediator, histamine, that occurs in most animal tissues.Electric Literature of C5H5BrN2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Yu, Pan’s team published research in Journal of Molecular Structure in 2022 | CAS: 1692-25-7

Pyridin-3-ylboronic acid(cas: 1692-25-7) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Recommanded Product: 1692-25-7

Recommanded Product: 1692-25-7In 2022 ,《Design, synthesis and antitumor evaluation of novel quinazoline analogs in hepatocellular carcinoma cell》 appeared in Journal of Molecular Structure. The author of the article were Yu, Pan; Cao, Weiya; Yang, Shilong; Wang, Yuan; Xia, Aixin; Tan, Xinlan; Wang, Luyi. The article conveys some information:

In this paper, five quinazoline analogs I (R = Cl, 1H-indol-5-yl, 4-chlorophenyl, pyridin-3-yl, 4-aminophenyl) were preliminary designed through scaffold shopping from mTOR inhibitors and synthesized in four steps. Five compounds I exhibited potent antitumor activity against the HepG2 cell line by MTT assay. Compound I (R = 1H-indol-5-yl) (II) (IC50 = 4.06μM) was found as the most potent analog and showed better antiproliferative ability than sorafenib (IC50 = 6.14μM). The result of the wound healing assay and transwell migration assay indicated II strong potential to suppress HepG2 cell migration in a dose- and time-dependent manner. The underlying mechanism of its cytotoxicity was also investigated and the results of western blotting confirmed that compound II exposure could block the cell cycle, promote apoptosis and inhibit AKT and mTOR phosphorylation in HepG2 cells. Mol. docking further supported that compound II showed a high affinity to mTOR kinase. The results favored rational design intention and hinted that the new quinazolines I might be helpful in the further explorations of potent agents. In the experimental materials used by the author, we found Pyridin-3-ylboronic acid(cas: 1692-25-7Recommanded Product: 1692-25-7)

Pyridin-3-ylboronic acid(cas: 1692-25-7) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Recommanded Product: 1692-25-7

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sonkar, Chanchal’s team published research in RSC Medicinal Chemistry in 2022 | CAS: 98-98-6

Picolinic acid(cas: 98-98-6) is used as a chelate for alkaline earth metals. Used to prepare picolinato ligated transition metal complexes. In synthetic organic chemistry, has been used as a substrate in the Mitsunobu reaction and in the Hammick reaction.Related Products of 98-98-6

Related Products of 98-98-6In 2022 ,《Ruthenium(II)-arene complexes as anti-metastatic agents, and related techniques》 appeared in RSC Medicinal Chemistry. The author of the article were Sonkar, Chanchal; Sarkar, Sayantan; Mukhopadhyay, Suman. The article conveys some information:

A review. With the discovery of cisplatin, a vast area of applications of metallodrugs in cancer treatment was opened but due to the side effects caused by the cisplatin complexes, researchers began to look for alternatives with similar anticancer properties but fewer side effects. Ruthenium was found to be a promising candidate, considering its significant anticancer properties and low side effects. Several ruthenium complexes, viz. NAMI-A, KP1019, KP1339, and TLD1433, have entered clin. trials. Some other arene ruthenium complexes such as RM175 and RAPTA-C have also entered clin. trials but very few of them have shown anti-metastatic properties. Herein, we provide information and probable mechanistic pathways for ruthenium(II)-arene complexes that have been studied, so far, for their anti-metastatic activities. Also, we discuss the techniques and their significance for determining the anti-metastatic effects of the complexes. In the experimental materials used by the author, we found Picolinic acid(cas: 98-98-6Related Products of 98-98-6)

Picolinic acid(cas: 98-98-6) is used as a chelate for alkaline earth metals. Used to prepare picolinato ligated transition metal complexes. In synthetic organic chemistry, has been used as a substrate in the Mitsunobu reaction and in the Hammick reaction.Related Products of 98-98-6

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Al Saedi, Ahmed’s team published research in Experimental Gerontology in 2020 | CAS: 98-98-6

Picolinic acid(cas: 98-98-6) is used as a chelate for alkaline earth metals. Used to prepare picolinato ligated transition metal complexes. In synthetic organic chemistry, has been used as a substrate in the Mitsunobu reaction and in the Hammick reaction.Name: Picolinic acid

Name: Picolinic acidIn 2020 ,《The multiple faces of tryptophan in bone biology》 appeared in Experimental Gerontology. The author of the article were Al Saedi, Ahmed; Sharma, Shilpa; Summers, Matthew A.; Nurgali, Kulmira; Duque, Gustavo. The article conveys some information:

A review. Osteoporosis is highly prevalent in older persons. While many advances have been made in the field of osteoporosis, current treatments have been affected by unexpected side effects and limited efficacy; therefore, new approaches to identify disease mechanisms and pathways are required. This review focuses on the influence of tryptophan metabolites, particularly kynurenines and serotonin on bone. The kynurenine (KYN) pathway is associated with osteoblastogenesis and can be linked to the pathophysiol. of osteoporosis. The activity of osteoblasts is reduced by 3-hydroxykynurenine (3-HKYN), a product of KYN. In addition, decreasing concentrations of 3-hydroxyanthranilic acid with aging can be one of the causes of bone loss. In contrast, picolinic acid, an end-product of the KYN pathway, acts as a bone anabolic. On the other hand, gut-derived serotonin (GDS) inhibits bone formation, whereas brain-derived serotonin enhances bone formation and decreases bone resorption. Overall, understanding the exact mechanisms of action of tryptophan metabolites on bone could have great potential to develop effective treatments for osteoporosis and other bone diseases. The experimental process involved the reaction of Picolinic acid(cas: 98-98-6Name: Picolinic acid)

Picolinic acid(cas: 98-98-6) is used as a chelate for alkaline earth metals. Used to prepare picolinato ligated transition metal complexes. In synthetic organic chemistry, has been used as a substrate in the Mitsunobu reaction and in the Hammick reaction.Name: Picolinic acid

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Pujante-Galian, Maria Angeles’s team published research in Molecules in 2020 | CAS: 100-48-1

4-Cyanopyridine(cas: 100-48-1) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Application In Synthesis of 4-Cyanopyridine

Application In Synthesis of 4-CyanopyridineIn 2020 ,《P-cymene complexes of ruthenium(II) as antitumor agents》 was published in Molecules. The article was written by Pujante-Galian, Maria Angeles; Perez, Sergio A.; Montalban, Mercedes G.; Carissimi, Guzman; Fuster, Marta G.; Villora, Gloria; Garcia, Gabriel. The article contains the following contents:

In this work, the cytotoxic behavior of six ruthenium(II) complexes of stoichiometry [(η6-p-cymene)RuCl2L] (I-VI), L = 4-cyanopyridine (I), 2-aminophenol (II), 4-aminophenol (III), pyridazine (IV), and [(η6-p-cymene)RuClL2]PF6; L = cyanopyridine (V), L = 2-aminophenol(VI) towards three cell lines was studied. Two of them, HeLa and MCF-7, are human carcinogenic cells from cervical carcinoma and human breast cancer, resp. A comparison with healthy cells was carried out with BGM cells which are monkey epithelial cells of renal origin. The behavior of complex II exhibits selectivity towards healthy cells, which is a promising feature for use in cancer treatment since it might reduce the side effects of most current therapies. The experimental part of the paper was very detailed, including the reaction process of 4-Cyanopyridine(cas: 100-48-1Application In Synthesis of 4-Cyanopyridine)

4-Cyanopyridine(cas: 100-48-1) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Application In Synthesis of 4-Cyanopyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Cancelliere, Ambra M.’s team published research in Chemical Science in 2020 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Category: pyridine-derivatives Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Category: pyridine-derivativesIn 2020 ,《Efficient trinuclear Ru(II)-Re(I) supramolecular photocatalysts for CO2 reduction based on a new tris-chelating bridging ligand built around a central aromatic ring》 was published in Chemical Science. The article was written by Cancelliere, Ambra M.; Puntoriero, Fausto; Serroni, Scolastica; Campagna, Sebastiano; Tamaki, Yusuke; Saito, Daiki; Ishitani, Osamu. The article contains the following contents:

We have designed and synthesized a new tris-chelating polypyridine ligand (bpy3Ph) suitable to be used as a bridging ligand (BL) for constructing various supramol. photocatalysts. The ligand bpy3Ph has been used to prepare, according to a multi-step synthetic protocol, trinuclear supramol. photocatalysts containing different metal subunits. In particular, the compounds Ru2Re and RuRe2 have been prepared, containing different ratios of components based on Ru(dmb)32+-type and Re(dmb)(CO)3Cl-type units (dmb = 4,4′-dimethyl-2,2′-bipyridine), which can play the roles of photosensitizers and catalyst units for photocatalytic CO2 reduction, resp. The trinuclear model Ru3 and mononuclear and dinuclear Ru and Ru2 precursor metal complexes, containing free chelating sites, have also been synthesized using the same bridging ligand. The absence of negligible accumulation of the mono-reduced form of the photosensitizer indicates fast electron transfer to the catalyst unit(s) through the relatively large bridging ligand and is proposed to contribute to the outstanding photocatalytic properties of the new species, including their durability. The relevant photocatalytic behavior of the new systems indicates new avenues for the design of extended bridging ligands capable of efficiently and functionally integrating photosensitizers and catalysts towards the preparation of new, larger supramol. photocatalysts for selective CO2 reduction In the experimental materials used by the author, we found 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Category: pyridine-derivatives)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Category: pyridine-derivatives Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Wang, Jianjian’s team published research in New Journal of Chemistry in 2020 | CAS: 100-48-1

4-Cyanopyridine(cas: 100-48-1) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Category: pyridine-derivatives

Category: pyridine-derivativesIn 2020 ,《Mild and selective hydrogenation of nitriles into primary amines over a supported Ni catalyst》 was published in New Journal of Chemistry. The article was written by Wang, Jianjian; Tang, Qingjie; Jin, Shiwei; Wang, Yanxin; Yuan, Ziliang; Chi, Quan; Zhang, Zehui. The article contains the following contents:

The development of new heterogeneous non-noble catalytic systems for the selective hydrogenation of nitriles into primary amines is a challenging task. In this study, a mesoporous Al2O3-supported Ni catalyst (denoted as Ni/Al2O3-600, where 600 represents the reduction temperature) demonstrated a high catalytic activity for the hydrogenation of nitriles under mild conditions (60-80°C and 2.5 bar H2) with ammonia as the additive. This catalytic system has a wide substrate range; and the Ni/Al2O3 catalyst demonstrated a good tolerance to other functional groups, which was possibly due to its high catalytic activity under mild conditions. A plausible reaction pathway was proposed for the hydrogenation of nitriles into primary amines, and it was found that ammonia played a great role in the enhancement of the selectivity of primary amines by the inhibition of the side reaction to generate secondary amines. In addition, the Ni/Al2O3-600 catalyst could be reused five times without activity loss through convenient magnetic recovery. In the experimental materials used by the author, we found 4-Cyanopyridine(cas: 100-48-1Category: pyridine-derivatives)

4-Cyanopyridine(cas: 100-48-1) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Category: pyridine-derivatives

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Frieman, Bryan A.’s team published research in Tetrahedron Letters in 2014 | CAS: 29682-15-3

Methyl 5-bromopicolinate(cas: 29682-15-3) belongs to pyridine. Pyridines, quinolines, and isoquinolines have found a function in almost all aspects of organic chemistry. Pyridine has found use as a solvent, base, ligand, functional group, and molecular scaffold. As structural elements, these moieties are potent electron-deficient groups, metal-directing functionalities, fluorophores, and medicinally important pharmacophores. Name: Methyl 5-bromopicolinate

Name: Methyl 5-bromopicolinateIn 2014 ,《An environmentally-friendly one-pot synthesis of 4-sulfonyl benzoic acids》 was published in Tetrahedron Letters. The article was written by Frieman, Bryan A.. The article contains the following contents:

This Letter reported an environmentally-friendly one-pot SNAr reaction of thiols to 4-halobenzoic acid Me esters to provide 4-substituted sulfone benzoic acids and picolinic acids after bleach-mediated oxidative workup. These acid intermediates were synthesized on gram scale, are perfect partners for library synthesis, and have good phys. chem. properties useful for drug discovery. In the experimental materials used by the author, we found Methyl 5-bromopicolinate(cas: 29682-15-3Name: Methyl 5-bromopicolinate)

Methyl 5-bromopicolinate(cas: 29682-15-3) belongs to pyridine. Pyridines, quinolines, and isoquinolines have found a function in almost all aspects of organic chemistry. Pyridine has found use as a solvent, base, ligand, functional group, and molecular scaffold. As structural elements, these moieties are potent electron-deficient groups, metal-directing functionalities, fluorophores, and medicinally important pharmacophores. Name: Methyl 5-bromopicolinate

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem