Du, Miao et al. published their research in Inorganica Chimica Acta in 2005 | CAS: 15420-02-7

2,5-Di(pyridin-4-yl)-1,3,4-oxadiazole (cas: 15420-02-7) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Synthetic Route of C12H8N4O

Two-dimensional CuII and first PbII coordination polymers based on a flexible 1,4-cyclohexanedicarboxylate ligand displaying different conformations and coordination modes was written by Du, Miao;Cai, Hua;Zhao, Xiao-Jun. And the article was included in Inorganica Chimica Acta in 2005.Synthetic Route of C12H8N4O This article mentions the following:

Two novel metal-organic hybrid coordination polymers {[Cu(bpo)(chdc)(H2O)](H2O)0.5}n (1) and [Pb(chdc)(H2O)]n (2) were synthesized under different conditions and structurally characterized by single-crystal x-ray diffraction technique, where H2chdc refers to a flexible 1,4-cyclohexanedicarboxylic acid ligand and bpo is 2,5-bis(4-pyridyl)-1,3,4-oxadiazole. Complex 1 has a two-dimensional (2-D) grid-like [11.28 × 13.63 Å2] framework in which the CuII centers are extended via bidentate bridging ligands bpo and e,e-trans-chdc along two directions, exhibiting large porous cavities. Coordination polymer 2 represents the 1st PbII complex of H2chdc in which the larger PbII centers are connected by e,a-cis-chdc anions to afford a 2-dimensional close-knit structure. In the experiment, the researchers used many compounds, for example, 2,5-Di(pyridin-4-yl)-1,3,4-oxadiazole (cas: 15420-02-7Synthetic Route of C12H8N4O).

2,5-Di(pyridin-4-yl)-1,3,4-oxadiazole (cas: 15420-02-7) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Synthetic Route of C12H8N4O

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem