Recommendable routes to trifluoromethyl-substituted pyridine- and quinolinecarboxylic acids was written by Cottet, Fabrice;Marull, Marc;Lefebvre, Olivier;Schlosser, Manfred. And the article was included in European Journal of Organic Chemistry in 2003.Reference of 175205-82-0 This article mentions the following:
As part of a case study, rational strategies for the preparation of all ten 2-, 3-, or 4-pyridinecarboxylic acids and all nine 2-, 3-, 4-, or 8-quinolinecarboxylic acids bearing trifluoromethyl substituents at the 2-, 3-, or 4-position were elaborated. The trifluoromethyl group, if not already present in the precursor, was introduced either by the deoxygenative fluorination of suitable carboxylic acids with sulfur tetrafluoride or by the displacement of ring-bound bromine or iodine by trifluoromethylcopper generated in situ. The carboxy function was produced by treatment of organolithium or organomagnesium intermediates, products of halogen/metal or hydrogen/metal permutation, with carbon dioxide. In the experiment, the researchers used many compounds, for example, 2-Bromo-3-(trifluoromethyl)pyridine (cas: 175205-82-0Reference of 175205-82-0).
2-Bromo-3-(trifluoromethyl)pyridine (cas: 175205-82-0) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Reference of 175205-82-0