Influence of Guest/Host Morphology on Room Temperature Phosphorescence Properties of Pure Organic Doped Systems was written by Liu, Xiaoqing;Pan, Yanyan;Lei, Yunxiang;Liu, Nannan;Dai, Wenbo;Liu, Miaochang;Cai, Zhengxu;Wu, Huayue;Huang, Xiaobo;Dong, Yuping. And the article was included in Journal of Physical Chemistry Letters in 2021.Recommanded Product: 91-02-1 This article mentions the following:
Guest/host phosphorescence materials have attracted much attention; traditionally, researchers have focused on the influence of the electronic properties and energy levels of the mols. on the phosphorescence activities. The effects of the morphol. on the phosphorescence are ignored. Three isoquinoline guests with different aliphatic rings and 3 hosts are selected to construct guest/host materials. The guests are dispersed in the host as clusters. The morphols. of the guest/host directly affect the phosphorescence. In these systems, the guests have strong intermol. interactions, which are beneficial to stabilize the triplet excitons; meanwhile, the hosts should have weak intermol. interactions with easily changed morphol. to accept the guest clusters, which synergistically ensure that the doped materials have excellent RTP properties. This is the 1st work focusing on the effect of mol. morphol. on the phosphorescence of guest/host systems. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Recommanded Product: 91-02-1).
Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Recommanded Product: 91-02-1