Li, Xiao-Hua et al. published their research in Synthesis in 2018 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Quality Control of 2-Phenoxypyridine

Substituent Effects of 2-Pyridones on Selective O-Arylation with Diaryliodonium Salts: Synthesis of 2-Aryloxypyridines under Transition-Metal-Free Conditions was written by Li, Xiao-Hua;Ye, Ai-Hui;Liang, Cui;Mo, Dong-Liang. And the article was included in Synthesis in 2018.Quality Control of 2-Phenoxypyridine This article mentions the following:

An efficient transition-metal-free strategy to synthesize 2-aryloxypyridine derivatives was developed by a selective O-arylation of 2-pyridones with diaryliodonium salts. The reaction was compatible with a series of functional groups for 2-pyridones and diaryliodonium salts such as halides, nitro, cyano and ester groups. The substituents at the C6-position of 2-pyridones favored O-arylation products because of steric hindrance. The reaction was easily performed on a gram-scale and 6-chloro-2-pyridone was a good precursor to access various unsubstituted 2-aryloxypyridines by dehalogenation. A P2Y1 lead compound analog I could be prepared in good yield over two steps. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Quality Control of 2-Phenoxypyridine).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Quality Control of 2-Phenoxypyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem