Karunakaran, Gopalu et al. published their research in Materials Science & Engineering, C: Materials for Biological Applications in 2021 | CAS: 628-13-7

Pyridinehydrochloride (cas: 628-13-7) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Name: Pyridinehydrochloride

Mesoporous Mn-doped hydroxyapatite nanorods obtained via pyridinium chloride enabled microwave-assisted synthesis by utilizing Donax variabilis seashells for implant applications was written by Karunakaran, Gopalu;Cho, Eun-Bum;Thirumurugan, Keerthanaa;Kumar, Govindan Suresh;Kolesnikov, Evgeny;Boobalan, Selvakumar;Janarthanan, Gopinathan;Pillai, Mamatha Muraleedharan;Rajendran, Selvakumar. And the article was included in Materials Science & Engineering, C: Materials for Biological Applications in 2021.Name: Pyridinehydrochloride This article mentions the following:

Manganese-doped mesoporous hydroxyapatite (MnHAp) nanorods, a bio-apatite were synthesized via pyridinium chloride mediated microwave approach using bio-waste Donax variabilis seashells to treat orthopedic infections. This is the first report on using pyridinium chloride mediated mesoporous MnHAp nanorods synthesis. Pure and Mn doped HAp samples were examined using Raman spectroscopy, X-ray powder diffraction (XRD) and Fourier transform IR spectroscopy (FTIR) studies to confirm the prepared HAp nanorods. Furthermore, the fabrication of manganese-doped HAp was successful with the formation of a hexagonal crystal lattice without disturbing the HAp phase. It is because, at the time of synthesis, PO43- ions form an electrostatic interaction with the Mn ions. Furthermore, Mn-doped HAp samples showed a reduction in their sizes of 15, 10-15, 5-10 nm width, and 80-100, 10-15, 20-30 nm length with varied pore diameters and surface area. The pure HAp, MnHAp-1, MnHAp-2, and MnHAp-3 nanorods disclose the surface area of 39.4, 18.0, 49.2, and 80.4 m2 g-1, with a pore volume of 0.0102, 0.0047, 0.0143, and 0.0447 cm3 g-1, the corresponding pore diameter was estimated to be 6, 7, 6, and 4 nm, resp. Moreover, antibacterial activity reveals effective bactericidal action against infections causing pathogens whereas cytotoxicity examination (MTT assay), and zebrafish results reveal their non-toxic behavior. Therefore, it is evident from the study, that rapid fabrication of mesoporous and diverse structured MnHAp nanorods could be convenient with pyridinium chloride enabled microwave-assisted method as a bactericidal biomaterial for implant applications. In the experiment, the researchers used many compounds, for example, Pyridinehydrochloride (cas: 628-13-7Name: Pyridinehydrochloride).

Pyridinehydrochloride (cas: 628-13-7) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Name: Pyridinehydrochloride

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem