What advice would you give a new faculty member or graduate student interested in a career 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Welcome to talk about 65-22-5, If you have any questions, you can contact Asante, I; Pei, H; Zhou, E; Liu, SY; Chui, D; Yoo, E; Conti, DV; Louie, SG or send Email.

Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Recently I am researching about METHYLENETETRAHYDROFOLATE REDUCTASE POLYMORPHISM; COLON-CANCER; DNA METHYLATION; FOLATE STATUS; RISK; HOMOCYSTEINE; DIHYDROFOLATE; METABOLITES; ADENOMA; PLASMA, Saw an article supported by the National Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) – USA; NIH NCIUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) – USANIH National Cancer Institute (NCI) [R01CA140561]; NATIONAL CANCER INSTITUTEUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) – USANIH National Cancer Institute (NCI) [R01CA140561] Funding Source: NIH RePORTER. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Asante, I; Pei, H; Zhou, E; Liu, SY; Chui, D; Yoo, E; Conti, DV; Louie, SG. The CAS is 65-22-5. Through research, I have a further understanding and discovery of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Introduction: colorectal cancer (CRC) continues to be difficult to diagnose due to the lack of reliable and predictive biomarkers. Objective: to identify blood-based biomarkers that can be used to distinguish CRC cases from controls. Methods: a workflow for untargeted followed by targeted metabolic profiling was conducted on the plasma samples of 26 CRC cases and ten healthy volunteers (controls) using liquid chromatography-mass spectrometry (LCMS). The data acquired in the untargeted scan was processed and analyzed using MarkerViewt software. The significantly different ions that distinguish CRC cases from the controls were identified using a mass-based human metabolome search. The result was further used to inform the targeted scan workflow. Results: the untargeted scan yielded putative biomarkers some of which were related to the folate-dependent one-carbon metabolism (FOCM). Analysis of the targeted scan found the plasma levels of nine FOCM metabolites to be significantly different between cases and controls. The classification models of the cases and controls, in both the targeted and untargeted approaches, each yielded a 97.2% success rate after cross-validation. Conclusion: we have identified plasma metabolites with screening potential to discriminate between CRC cases and controls.

Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Welcome to talk about 65-22-5, If you have any questions, you can contact Asante, I; Pei, H; Zhou, E; Liu, SY; Chui, D; Yoo, E; Conti, DV; Louie, SG or send Email.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Awesome and Easy Science Experiments about 65-22-5

Welcome to talk about 65-22-5, If you have any questions, you can contact Pati, C; Ghosh, K or send Email.. Recommanded Product: 65-22-5

Recommanded Product: 65-22-5. I found the field of Chemistry very interesting. Saw the article A 1,8-naphthalimide-pyridoxal conjugate as a supramolecular gelator for colorimetric read out of F- ions in solution, gel and solid states published in 2019.0, Reprint Addresses Ghosh, K (corresponding author), Univ Kalyani, Dept Chem, Kalyani 741235, W Bengal, India.. The CAS is 65-22-5. Through research, I have a further understanding and discovery of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride.

A naphthalimide-pyridoxal conjugate 1 has been designed and synthesized. Compound 1 forms a stable greenish yellow colored gel in DMSO:H2O (8:1 v/v). Rheological study reveals that the gel is mechanically strong (G> G) over a wide range of applied strains. The morphology of the gel as determined by FESEM shows a highly cross-linked fibrous network. The gel is anion-responsive and is selectively transformed into a sol with a color change from greenish yellow to deep blue only in the presence of F- among other anions. In CH3CN, compound 1 was also sensitive to basic anions such as F- and AcO- ions. In solution, F- was differentiated from AcO- through a color change. While the yellow colored solution of 1 in acetonitrile was changed into deep blue in the presence of F-, AcO- ions gave a faint blue coloration. A similar colorimetric differentiation of F- from AcO- has been possible in CH3CN by a reusable Schiff base-linked Merrifield resin 1a or 1b.

Welcome to talk about 65-22-5, If you have any questions, you can contact Pati, C; Ghosh, K or send Email.. Recommanded Product: 65-22-5

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Extracurricular laboratory: Synthetic route of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Welcome to talk about 65-22-5, If you have any questions, you can contact Li, XQ; Wen, Q; Gu, JP; Liu, WQ; Wang, QM; Zhou, GF; Gao, JW; Zheng, YH or send Email.. Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

An article Diverse reactivity to hypochlorite and copper ions based on a novel Schiff base derived from vitamin B6 cofactor WOS:000583948500064 published article about FLUORESCENT-PROBE; MITOCHONDRIA; BIOMARKER; SENSORS in [Li, Xiangqian; Wen, Qin; Gu, Jiapei; Wang, Qianming; Zheng, Yuhui] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China; [Liu, Wanqiang] Hunan Univ Sci & Technol, Sch Chem & Chem Engn, Xiangtan 411201, Peoples R China; [Wang, Qianming; Zhou, Guofu; Gao, Jinwei] South China Normal Univ, South China Acad Adv Optoelect, Inst Adv Mat, Guangzhou 510006, Peoples R China; [Wang, Qianming; Zhou, Guofu; Gao, Jinwei] South China Normal Univ, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China in 2020.0, Cited 50.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5. Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

A new Schiff base receptor (2-amino-3-(((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene) amino)maleonitrile (GAL)) has been synthesized and such diaminomaleonitrile-based molecular framework is observed to be water soluble. GAL possesses both colorimetric and off-on fluorescent response in the presence of ClO-. The response time has been controlled within 6 min. The limit of detection (LOD) has been calculated to be 47.5 nM. The addition of Cu2+ can only induce clear color evolution from pale to deep yellow (LOD: 0.22 mu M) and no fluorescence changes are found. Moreover, its reliability and practicality are verified via the determination of ClO- in spiked samples of tap water and pond water. The exploration of bioactive vitamin B6 cofactor as a sensing platform will open a new way for multiple target recognition in competitive mediums. (C) 2020 Elsevier B.V. All rights reserved.

Welcome to talk about 65-22-5, If you have any questions, you can contact Li, XQ; Wen, Q; Gu, JP; Liu, WQ; Wang, QM; Zhou, GF; Gao, JW; Zheng, YH or send Email.. Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Interesting scientific research on C8H10ClNO3

Welcome to talk about 65-22-5, If you have any questions, you can contact Yuwen, ZY; Mei, HX; Li, H; Pu, SZ or send Email.. Application In Synthesis of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

An article A novel diarylethene probe with high selective recognition of CN- and Mg2+ and its application WOS:000573273600005 published article about DUAL-CHANNEL RECOGNITION; MOLECULAR LOGIC GATES; TURN-ON SENSOR; FLUORESCENT SENSOR; AQUEOUS-MEDIA; COLORIMETRIC SENSOR; SCHIFF-BASE; CYANIDE; CHEMOSENSOR; MAGNESIUM in [Yuwen, Zhiyang; Li, Hui; Pu, Shouzhi] Jiangxi Sci & Technol Normal Univ, Jiangxi Key Lab Organ Chem, Nanchang 330013, Jiangxi, Peoples R China; [Mei, Hongxin] Nanchang Normal Univ, Dept Chem, Nanchang 330013, Jiangxi, Peoples R China in 2020.0, Cited 70.0. Application In Synthesis of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5

A chemical sensor composed of pyridoxal hydrochloride schiff base based on diarylethene (1O) was synthesized. Its photochemical properties and selectivity to ions were further studied. The chemosensor could detect cyanide effectively and is almost undisturbed by other ions. When titrating CN-, the reaction aroused a distinct change in the absorption spectrum with the color change from transparent to yellow, and the fluorescence intensity centered at 562 nm was increased 68 folds. It also exhibited a good fluorescence sensing of Mg(2+ )with high selectivity and sensitivity. Upon addition of Mg2+, its emission intensity enhanced 110 folds, with the color change from dark to bright blue. Its good spectral response could be applied to molecular logic circuit. Moreover, the chemosensor could be made into test paper strips for the qualitative and quantitative detection of CN- and Mg2+.

Welcome to talk about 65-22-5, If you have any questions, you can contact Yuwen, ZY; Mei, HX; Li, H; Pu, SZ or send Email.. Application In Synthesis of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Interesting scientific research on C8H10ClNO3

COA of Formula: C8H10ClNO3. Welcome to talk about 65-22-5, If you have any questions, you can contact Pishchugin, FV; Tuleberdiev, IT or send Email.

COA of Formula: C8H10ClNO3. Authors Pishchugin, FV; Tuleberdiev, IT in MAIK NAUKA/INTERPERIODICA/SPRINGER published article about in [Pishchugin, F. V.; Tuleberdiev, I. T.] Kyrgyz Natl Acad Sci, Inst Chem & Phytotechnol, Bishkek 720071, Kyrgyzstan in 2021.0, Cited 13.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5

The kinetics and mechanism of condensation of pyridoxal hydrochloride with L-alpha-asparagine, L-alpha- and D-alpha-aspartic acids are analyzed via UV spectroscopy and polarimetry. It is found that L-alpha-asparagine containing alpha-NH2 and gamma-NH2 groups interacts with pyridoxal via the gamma-NH2 group, forming Schiff bases that are resistant to chemical transformations. Rearrangement produces Schiff bases that form the cyclic structure from the amino acid moiety. L-alpha- and D-alpha-aspartic acids interacting with pyridoxal via alpha-NH2 groups create Schiff bases that form quinoid structures after elimination of alpha-hydrogen or CO2. Their subsequent hydrolysis results in pyridoxamine, alpha-ketoacids, and aldehyde acids, respectively. Schemes of the condensation mechanisms of L-alpha-asparagine, L-alpha-, D-alpha-aspartic acids with pyridoxal hydrochloride are proposed.

COA of Formula: C8H10ClNO3. Welcome to talk about 65-22-5, If you have any questions, you can contact Pishchugin, FV; Tuleberdiev, IT or send Email.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Interesting scientific research on C8H10ClNO3

Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Chen, XY; Li, H; Luo, HJ; Lin, ZX; Luo, WH or concate me.

Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Chen, XY; Li, H; Luo, HJ; Lin, ZX; Luo, WH in [Chen, Xuyang; Li, Hui; Luo, Hongjun; Lin, Zhexuan; Luo, Wenhong] Shantou Univ, Coll Med, Bioanalyt Lab, Xinling Rd 22, Shantou, Guangdong, Peoples R China published Synthesis and Evaluation of Pyridoxal Hydrazone and Acylhydrazone Compounds as Potential Angiogenesis Inhibitors in 2019.0, Cited 45.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5.

Background/Aims: Hydrazone and acylhydrazone derivatives, which are produced from aldehyde reacting with hydrazine or acylhydrazine, have been reported to exhibit antitumor activities. However, the angionenic effects of this kind of derivatives haven’t been elucidated. Here, we synthesized 12 pyridoxal hydrazone and acylhydrazone compounds and investigated their antiangiogenic effects and the underlying mechanisms. Method: 3-(4,5-Dimethylthiazol-2-yl)-2, 5-dipheyltetrazolium bromide assay was used to screen the inhibitory effects of the synthesized compounds on endothelial cells (ECs) proliferation. The compound with best inhibitory effect was further evaluated with wound-healing assay and tube formation assay. Calcein-Am assay was carried out to determine the content of intracellular labile iron pool (LIP). Intracellular reduced glutathione (GSH) was determined by spectrophotometry. Flow cytometry was used to determine cell cycle and apoptosis. Results: Compound 10 (3-hydroxy-5-[hydroxymethyl]-2-methyl-pyridine-4-carbaldehyde-2-naphthalen-1-acetyl hydrazone) showed the best inhibitory effect on human umbilical vascular ECs proliferation, with IC50 value of 25.4 mu mol/L. It not only inhibited wound-healing and tube formation of ECs, but also decreased the content of intracellular LIP and GSH. Furthermore, it arrested ECs cycle at S phase and induced cell apoptosis. Conclusions: Compound 10 exhibits antiangiogenic effects by reducing the content of intracellular LIP and GSH, and subsequently arresting cell cycle and inducing cell apoptosis.

Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Chen, XY; Li, H; Luo, HJ; Lin, ZX; Luo, WH or concate me.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

An overview of features, applications of compound:C8H10ClNO3

Welcome to talk about 65-22-5, If you have any questions, you can contact Mondal, S; Chakraborty, M; Mondal, A; Pakhira, B; Mukhopadhyay, SK; Banik, A; Sengupta, S; Chattopadhyay, SK or send Email.. Formula: C8H10ClNO3

An article Crystal structure, spectroscopic, DNA binding studies and DFT calculations of a Zn(II) complex WOS:000464280500021 published article about COORDINATION CHEMISTRY; FLUORESCENT SENSORS; CU(II) COMPLEXES; SYNAPTIC ZINC; MECHANISM; RUTHENIUM(II); VITAMIN-B-6; COPPER(II); INDUCTION; LIGANDS in [Mondal, Satyajit; Chakraborty, Moumita; Mondal, Antu; Pakhira, Bholanath; Chattopadhyay, Shyamal Kumar] Indian Inst Engn Sci & Technol, Dept Chem, Sibpur 711103, Howrah, India; [Mukhopadhyay, Subhra Kanti; Banik, Avishek] Univ Burdwan, Dept Microbiol, Burdwan 713104, W Bengal, India; [Sengupta, Swaraj] Birla Inst Technol, Dept Chem, Ranchi 835215, Jharkhand, India in 2019.0, Cited 67.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5. Formula: C8H10ClNO3

Herein we report, a mononuclear, highly fluorescent zinc(ii) complex Zn(L)(N-3)(H2O) (1) that was prepared by an easy one pot method, in which the tridentate Schiff base ligand (E)-4-((2-(dimethylamino)ethylimino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (HL) was generated in situ. The compound is characterized by various spectroscopic techniques, and its structure was determined by single crystal X-ray diffraction studies. DFT calculations were used to understand the electronic structures of the ligand and the complex, and TD-DFT calculations were performed to interpret the nature of the electronic transitions observed in their UV-vis spectra. In the complex, Zn(II) is found to be penta-coordinated with one azide ligand, an aqua ligand and a monoanionic tridentate N,N,O-donor ligand. In an aqueous methanol (1:9 by volume) solution, at the physiological pH (0.01 M Tris-HCl buffer, pH 7.4), compound 1 exhibits an intense greenish blue fluorescence (lambda(ex) 390 nm, lambda(em) 462 nm), whose intensity is about 17-fold stronger than that of the free ligand. Compound 1 is found to show significant DNA binding activity. The pyridoxal appended tridentate ligand can be used for the bio-imaging of Zn(II).

Welcome to talk about 65-22-5, If you have any questions, you can contact Mondal, S; Chakraborty, M; Mondal, A; Pakhira, B; Mukhopadhyay, SK; Banik, A; Sengupta, S; Chattopadhyay, SK or send Email.. Formula: C8H10ClNO3

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Why Are Children Getting Addicted To 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Welcome to talk about 65-22-5, If you have any questions, you can contact Morkovnik, AS; Zubenko, AA; Divaeva, LN; Kartsev, VG; Borodkin, GS; Klimenko, AI or send Email.

Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. In 2019.0 MENDELEEV COMMUN published article about NATURAL-PRODUCTS; MITOCHONDRIAL; DESIGN in [Morkovnik, Anatolii S.; Divaeva, Ludmila N.; Borodkin, Gennadii S.] Southern Fed Univ, Inst Phys & Organ Chem, Rostov Na Donu 344090, Russia; [Zubenko, Alexander A.] North Caucasian Zonal Sci Vet Inst, Novocherkassk 346406, Rostov On Don R, Russia; [Kartsev, Victor G.] InterBioScreen Ltd, Chernogolovka 142432, Moscow Region, Russia; [Klimenko, Alexander I.] Don State Agr Univ, Novocherkassk 346493, Rostov On Don R, Russia in 2019.0, Cited 34.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5.

A simple method for pyridoxal structural modification via furan ring closure was developed resulting in 2-acyl- and 2-heteroarylfuro[2,3-c]pyridines. The reaction products can be proposed as pyridoxal mimetics to inhibit pyridoxal 5′-phosphate-dependent enzymes.

Safety of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Welcome to talk about 65-22-5, If you have any questions, you can contact Morkovnik, AS; Zubenko, AA; Divaeva, LN; Kartsev, VG; Borodkin, GS; Klimenko, AI or send Email.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Brief introduction of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Product Details of 65-22-5. Bye, fridends, I hope you can learn more about C8H10ClNO3, If you have any questions, you can browse other blog as well. See you lster.

Authors Mondal, S; Chakraborty, M; Mondal, A; Pakhira, B; Mukhopadhyay, SK; Banik, A; Sengupta, S; Chattopadhyay, SK in ROYAL SOC CHEMISTRY published article about COORDINATION CHEMISTRY; FLUORESCENT SENSORS; CU(II) COMPLEXES; SYNAPTIC ZINC; MECHANISM; RUTHENIUM(II); VITAMIN-B-6; COPPER(II); INDUCTION; LIGANDS in [Mondal, Satyajit; Chakraborty, Moumita; Mondal, Antu; Pakhira, Bholanath; Chattopadhyay, Shyamal Kumar] Indian Inst Engn Sci & Technol, Dept Chem, Sibpur 711103, Howrah, India; [Mukhopadhyay, Subhra Kanti; Banik, Avishek] Univ Burdwan, Dept Microbiol, Burdwan 713104, W Bengal, India; [Sengupta, Swaraj] Birla Inst Technol, Dept Chem, Ranchi 835215, Jharkhand, India in 2019.0, Cited 67.0. Product Details of 65-22-5. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5

Herein we report, a mononuclear, highly fluorescent zinc(ii) complex Zn(L)(N-3)(H2O) (1) that was prepared by an easy one pot method, in which the tridentate Schiff base ligand (E)-4-((2-(dimethylamino)ethylimino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (HL) was generated in situ. The compound is characterized by various spectroscopic techniques, and its structure was determined by single crystal X-ray diffraction studies. DFT calculations were used to understand the electronic structures of the ligand and the complex, and TD-DFT calculations were performed to interpret the nature of the electronic transitions observed in their UV-vis spectra. In the complex, Zn(II) is found to be penta-coordinated with one azide ligand, an aqua ligand and a monoanionic tridentate N,N,O-donor ligand. In an aqueous methanol (1:9 by volume) solution, at the physiological pH (0.01 M Tris-HCl buffer, pH 7.4), compound 1 exhibits an intense greenish blue fluorescence (lambda(ex) 390 nm, lambda(em) 462 nm), whose intensity is about 17-fold stronger than that of the free ligand. Compound 1 is found to show significant DNA binding activity. The pyridoxal appended tridentate ligand can be used for the bio-imaging of Zn(II).

Product Details of 65-22-5. Bye, fridends, I hope you can learn more about C8H10ClNO3, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

The Shocking Revelation of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Welcome to talk about 65-22-5, If you have any questions, you can contact Yuwen, ZY; Mei, HX; Li, H; Pu, SZ or send Email.

Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. In 2020.0 J PHOTOCH PHOTOBIO A published article about DUAL-CHANNEL RECOGNITION; MOLECULAR LOGIC GATES; TURN-ON SENSOR; FLUORESCENT SENSOR; AQUEOUS-MEDIA; COLORIMETRIC SENSOR; SCHIFF-BASE; CYANIDE; CHEMOSENSOR; MAGNESIUM in [Yuwen, Zhiyang; Li, Hui; Pu, Shouzhi] Jiangxi Sci & Technol Normal Univ, Jiangxi Key Lab Organ Chem, Nanchang 330013, Jiangxi, Peoples R China; [Mei, Hongxin] Nanchang Normal Univ, Dept Chem, Nanchang 330013, Jiangxi, Peoples R China in 2020.0, Cited 70.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5.

A chemical sensor composed of pyridoxal hydrochloride schiff base based on diarylethene (1O) was synthesized. Its photochemical properties and selectivity to ions were further studied. The chemosensor could detect cyanide effectively and is almost undisturbed by other ions. When titrating CN-, the reaction aroused a distinct change in the absorption spectrum with the color change from transparent to yellow, and the fluorescence intensity centered at 562 nm was increased 68 folds. It also exhibited a good fluorescence sensing of Mg(2+ )with high selectivity and sensitivity. Upon addition of Mg2+, its emission intensity enhanced 110 folds, with the color change from dark to bright blue. Its good spectral response could be applied to molecular logic circuit. Moreover, the chemosensor could be made into test paper strips for the qualitative and quantitative detection of CN- and Mg2+.

Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Welcome to talk about 65-22-5, If you have any questions, you can contact Yuwen, ZY; Mei, HX; Li, H; Pu, SZ or send Email.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem