Adding a certain compound to certain chemical reactions, such as: 7153-08-4, 3,5-Diiodopyridin-4-ol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Safety of 3,5-Diiodopyridin-4-ol, blongs to pyridine-derivatives compound. Safety of 3,5-Diiodopyridin-4-ol
Example 405 N-[5-{7-(4-tert-Butylphenyl)furo[3,2-c]pyridin-2-yl}pyridin-3-yl]acetamide Step 1: Synthesis of N-{5-(7-iodofuro[3,2-c]pyridin-2-yl)pyridin-3-yl}acetamide [0743] A solution prepared by dissolving 3,5-diiodopyridin-4-ol (5.0 mmol), N-(5-ethynylpyridin-3-yl)acetamide (6.0 mmol) and copper(II) oxide (3.5 mmol) in anhydrous pyridine (30 ml) was stirred under reflux for 6 hours. The reaction mixture was cooled to room temperature, filtered through Celite, and concentrated under reduced pressure to yield brown oil. The residue was diluted with ethyl acetate, washed with aqueous ammonia, water and brine, in sequence, which was then dried over anhydrous magnesium sulfate and filtered. After the filtrate was concentrated, the residue thus obtained was purified by silica gel column chromatography (n-hexane/ethyl acetate=10/1, v/v) to obtain the title compound as light brown oil (yield: 49%).
The synthetic route of 7153-08-4 has been constantly updated, and we look forward to future research findings.
Reference:
Patent; YUHAN CORPORATION; Seo, Hyoung Sig; Kim, Tae Kyun; Lee, Hyun Joo; Kim, Dong Hoon; Lee, Gyu Jin; Park, Jun Chul; Gal, Ji Yeong; Kim, Tae-hoon; Hyun, Kwan Hoon; Ahn, Kyoung Kyu; Park, Kaapjoo; Nam, Su Youn; Lee, Ge Hyeong; Lim, Hee Jong; US2015/191478; (2015); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem