Liu, Jian et al. published their research in Proceedings of the National Academy of Sciences of the United States of America in 2016 | CAS: 628-13-7

Pyridinehydrochloride (cas: 628-13-7) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Pyridine derivatives are also useful as small-molecule α-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Quality Control of Pyridinehydrochloride

Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia was written by Liu, Jian;Kelley, Matthew S.;Wu, Weiqiang;Banerjee, Abhishek;Douvalis, Alexios P.;Wu, Jinsong;Zhang, Yongbo;Schatz, George C.;Kanatzidis, Mercouri G.. And the article was included in Proceedings of the National Academy of Sciences of the United States of America in 2016.Quality Control of Pyridinehydrochloride This article mentions the following:

A nitrogenase-inspired biomimetic chalcogel system comprising double-cubane [Mo2Fe6S8(SPh)3] and single-cubane (Fe4S4) biomimetic clusters demonstrates photocatalytic N2 fixation and conversion to NH3 in ambient temperature and pressure conditions. Replacing the Fe4S4 clusters in this system with other inert ions such as Sb3+, Sn4+, Zn2+ also gave chalcogels that were photocatalytically active. Finally, molybdenum-free chalcogels containing only Fe4S4 clusters are also capable of accomplishing the N2 fixation reaction with even higher efficiency than their Mo2Fe6S8(SPh)3-containing counterparts. Results suggest that redox-active iron-sulfide-containing materials can activate the N2 mol. upon visible light excitation, which can be reduced all of the way to NH3 using protons and sacrificial electrons in aqueous solution Evidently, whereas the Mo2Fe6S8(SPh)3 is capable of N2 fixation, Mo itself is not necessary to carry out this process. The initial binding of N2 with chalcogels under illumination was observed with in situ diffuse-reflectance FTIR spectroscopy (DRIFTS). 15N2 isotope experiments confirm that the generated NH3 derives from N2. D. functional theory (DFT) electronic structure calculations suggest that the N2 binding is thermodynamically favorable only with the highly reduced active clusters. The results reported herein contribute to ongoing efforts of mimicking nitrogenase in fixing nitrogen and point to a promising path in developing catalysts for the reduction of N2 under ambient conditions. In the experiment, the researchers used many compounds, for example, Pyridinehydrochloride (cas: 628-13-7Quality Control of Pyridinehydrochloride).

Pyridinehydrochloride (cas: 628-13-7) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Pyridine derivatives are also useful as small-molecule α-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Quality Control of Pyridinehydrochloride

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem