Visible-Light-Enabled Ortho-Selective Aminopyridylation of Alkenes with N-Aminopyridinium Ylides was written by Moon, Yonghoon;Lee, Wooseok;Hong, Sungwoo. And the article was included in Journal of the American Chemical Society in 2020.Quality Control of Phenyl(pyridin-2-yl)methanone This article mentions the following:
By utilizing an underexplored reactivity mode of N-aminopyridinium ylides, we developed the visible-light-induced ortho-selective aminopyridylation of alkenes via radical-mediated 1,3-dipolar cycloaddition The photocatalyzed single-electron oxidation of N-aminopyridinium ylides generates the corresponding radical cations that enable previously inaccessible 1,3-cycloaddition with a broader range of alkene substrates. The resulting cycloaddition adducts rapidly undergo subsequent homolytic cleavage of the N-N bond, conferring a substantial thermodn. driving force to yield various β-aminoethylpyridines. Remarkably, amino and pyridyl groups can be installed into both activated and unactivated alkenes with modular control of ortho-selectivity and 1,2-syn-diastereoselectivity under metal-free and mild conditions. Combined exptl. and computational studies are conducted to clarify the detailed reaction mechanism and the origins of site selectivity and diastereoselectivity. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Quality Control of Phenyl(pyridin-2-yl)methanone).
Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Quality Control of Phenyl(pyridin-2-yl)methanone