Murugan, Karthik published the artcileGreen-Synthesized Nickel Nanoparticles on Reduced Graphene Oxide as an Active and Selective Catalyst for Suzuki and Glaser-Hay Coupling Reactions, Computed Properties of 197958-29-5, the publication is Applied Organometallic Chemistry (2020), 34(9), e5778, database is CAplus.
The present work disclosed the potential catalytic application of the as-prepared RGO-Ni nanocomposite in Csp2-Csp2 Suzuki type homocoupling and Csp-Csp Glaser-Hay coupling reactions. A mild and benign methodol. to synthesize biaryls Ar-Ar [Ar = Ph, 3-MeOC6H4, 2-pyridyl, etc.] and 1,3-diynes R-CC-CC-R [R = t-Bu, 3-FC6H4, 4-EtC6H4, etc.] was demonstrated using the nickel nanoparticles supported on reduced graphene oxide (RGO-Ni) as a heterogeneous catalyst which was prepared using green reagents. A series of substituted biaryls Ar-Ar and 1,3-diynes R-CC-CC-R was synthesized in good to excellent yields via reduced graphene oxide supported nickel nanoparticles catalyzed Suzuki coupling of arylboronic acids and Glaser-Hay coupling of terminal alkynes resp. using 1,4-dioxane as a benign solvent. The present ligand-free catalytic system proceeded smoothly under mild conditions, avoided noble and stoichiometric metal reagents and tolerated sensitive functional groups such as nitrogen and sulfur containing heteroaryl boronic acids. Hot filtration test unambiguously proved the true heterogeneity of the catalyst and which supported for the further reusability of the catalyst for several times without any change in the activity. The easy preparation and simple magnetic separation, stability and reusability revealed that as-prepared RGO-Ni as a versatile catalyst for the synthesis of polyaromatic compounds both in academia and industries.
Applied Organometallic Chemistry published new progress about 197958-29-5. 197958-29-5 belongs to pyridine-derivatives, auxiliary class Pyridine,Boronic acid and ester, name is 2-Pyridinylboronic acid, and the molecular formula is C5H6BNO2, Computed Properties of 197958-29-5.
Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem