Extracurricular laboratory: Synthetic route of 65-22-5

Formula: C8H10ClNO3. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Pati, C; Ghosh, K or concate me.

An article A 1,8-naphthalimide-pyridoxal conjugate as a supramolecular gelator for colorimetric read out of F- ions in solution, gel and solid states WOS:000459942300031 published article about FLUORIDE-ION; ANION; FLUORESCENCE; AGGREGATION; METALLOGELS; DYE; CHEMOSENSORS; RECOGNITION; VITAMIN-B-6; DERIVATIVES in [Pati, Chiranjit; Ghosh, Kumaresh] Univ Kalyani, Dept Chem, Kalyani 741235, W Bengal, India in 2019.0, Cited 53.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5. Formula: C8H10ClNO3

A naphthalimide-pyridoxal conjugate 1 has been designed and synthesized. Compound 1 forms a stable greenish yellow colored gel in DMSO:H2O (8:1 v/v). Rheological study reveals that the gel is mechanically strong (G> G) over a wide range of applied strains. The morphology of the gel as determined by FESEM shows a highly cross-linked fibrous network. The gel is anion-responsive and is selectively transformed into a sol with a color change from greenish yellow to deep blue only in the presence of F- among other anions. In CH3CN, compound 1 was also sensitive to basic anions such as F- and AcO- ions. In solution, F- was differentiated from AcO- through a color change. While the yellow colored solution of 1 in acetonitrile was changed into deep blue in the presence of F-, AcO- ions gave a faint blue coloration. A similar colorimetric differentiation of F- from AcO- has been possible in CH3CN by a reusable Schiff base-linked Merrifield resin 1a or 1b.

Formula: C8H10ClNO3. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Pati, C; Ghosh, K or concate me.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Can You Really Do Chemisty Experiments About 65-22-5

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Oguro, Y; Nakamura, A; Kurahashi, A or concate me.. SDS of cas: 65-22-5

SDS of cas: 65-22-5. In 2019.0 J BIOSCI BIOENG published article about THERMAL-STABILITY; ACID; PH in [Oguro, Yoshifumi; Nakamura, Ayana; Kurahashi, Atsushi] Hakkaisan Brewery Co Ltd, 1051 Nagamori, Minamiuonuma, Niigata 9497112, Japan in 2019.0, Cited 22.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5.

Koji amazake, prepared from rice koji, is a traditional Japanese sweet beverage. The main source of sweetness is glucose derived from rice starch following digestion by enzymes of Aspergillus oryzae during saccharification. The temperature of this process was empirically determined as 45 degrees C-60 degrees C, but no studies have systematically investigated the effect of temperature on saccharification efficiency. We addressed this in the present study by evaluating saccharification efficiency at various temperatures. We found that glucose content was the highest at 50 degrees C (100%) and was reduced at temperatures of 40 degrees C (66.4%), 60 degrees C (91.9%), and 70 degrees C (76.6%). We previously reported that 12 types of oligosaccharides are present in koji amazake; the levels of eight of these, namely nigerose, kojibiose, trehalose, isomaltose, gentiobiose, raffinose, panose, and isomaltotriose, were the highest at 50 degrees C-60 degrees C, whereas sophorose production was maximal at 70 degrees C. Based on these findings, we initially performed saccharification at 50 degrees C and then switched the temperature to 70 degrees C. The maximum amount of each saccharide including sophorose that was produced was close to the values obtained at these two temperatures. Thus, oligosaccharide composition of koji amazake is dependent on saccharification temperature. These findings provide useful information for improving the consumer appeal of koji amazake by enhancing oligosaccharide content. (C) 2018, The Society for Biotechnology, Japan. All rights reserved.

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Oguro, Y; Nakamura, A; Kurahashi, A or concate me.. SDS of cas: 65-22-5

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Now Is The Time For You To Know The Truth About C8H10ClNO3

SDS of cas: 65-22-5. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Hwang, S; Ryu, JY; Jung, SH; Park, HR; Lee, J or concate me.

SDS of cas: 65-22-5. In 2020.0 POLYHEDRON published article about CYCLOHEXENE OXIDE; HIGHLY EFFICIENT; METAL-CATALYSTS; COPOLYMERIZATION; CO2; EPOXIDES in [Hwang, Saem; Ryu, Ji Yeon; Jung, Sung Hoo; Park, Hyoung-Ryun; Lee, Junseong] Chonnam Natl Univ, Dept Chem, 300 Yongbong Dong, Gwangju 500757, South Korea in 2020.0, Cited 33.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5.

Cobalt complexes containing a salen-type pyridoxal ligand with pyridine were synthesized as a new Co (III) catalytic system for the cycloaddition of carbon dioxide. Two cobalt(III) complexes possessing a salen-type pyridoxyl ligand were synthesized by the reaction of pyridoxal ligands (pyr(2)en = (N,N’-bis (pyridoxylideneiminato)ethylene) and pyr(2)cy = (N,N’-bis(pyridoxylideneiminato)cyclohexane)) and Co (OAc)(2) and characterized by various analytical methods, including infrared spectroscopy and high-resolution mass analysis. Single-crystal X-ray crystallography analysis confirmed that the cobalt pyr(2)en complex had a distorted octahedral structure: the tetradentate Schiff base ligand binds the cobalt metal in one plane, and the metal center adopts an octahedral geometry by the additional coordination of acetate and dimethyl sulfoxide. The synthesized complexes were used as catalysts in the cycloaddition of carbon dioxide (CO2) to propylene oxide. The catalysts showed high activity for cycloaddition between CO2 and epoxides, even at a low loading (0.5 mol%), in the presence of various cocatalysts. (C) 2020 Elsevier Ltd. All rights reserved.

SDS of cas: 65-22-5. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Hwang, S; Ryu, JY; Jung, SH; Park, HR; Lee, J or concate me.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Final Thoughts on Chemistry for 65-22-5

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Chen, XY; Li, H; Luo, HJ; Lin, ZX; Luo, WH or concate me.. Category: pyridine-derivatives

Category: pyridine-derivatives. In 2019.0 PHARMACOLOGY published article about ISONICOTINOYL HYDRAZONE; IRON CHELATORS; IN-VITRO; VITAMIN-B-6; EXPRESSION; APOPTOSIS; ANALOGS; TARGETS; GROWTH; AGENTS in [Chen, Xuyang; Li, Hui; Luo, Hongjun; Lin, Zhexuan; Luo, Wenhong] Shantou Univ, Coll Med, Bioanalyt Lab, Xinling Rd 22, Shantou, Guangdong, Peoples R China in 2019.0, Cited 45.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5.

Background/Aims: Hydrazone and acylhydrazone derivatives, which are produced from aldehyde reacting with hydrazine or acylhydrazine, have been reported to exhibit antitumor activities. However, the angionenic effects of this kind of derivatives haven’t been elucidated. Here, we synthesized 12 pyridoxal hydrazone and acylhydrazone compounds and investigated their antiangiogenic effects and the underlying mechanisms. Method: 3-(4,5-Dimethylthiazol-2-yl)-2, 5-dipheyltetrazolium bromide assay was used to screen the inhibitory effects of the synthesized compounds on endothelial cells (ECs) proliferation. The compound with best inhibitory effect was further evaluated with wound-healing assay and tube formation assay. Calcein-Am assay was carried out to determine the content of intracellular labile iron pool (LIP). Intracellular reduced glutathione (GSH) was determined by spectrophotometry. Flow cytometry was used to determine cell cycle and apoptosis. Results: Compound 10 (3-hydroxy-5-[hydroxymethyl]-2-methyl-pyridine-4-carbaldehyde-2-naphthalen-1-acetyl hydrazone) showed the best inhibitory effect on human umbilical vascular ECs proliferation, with IC50 value of 25.4 mu mol/L. It not only inhibited wound-healing and tube formation of ECs, but also decreased the content of intracellular LIP and GSH. Furthermore, it arrested ECs cycle at S phase and induced cell apoptosis. Conclusions: Compound 10 exhibits antiangiogenic effects by reducing the content of intracellular LIP and GSH, and subsequently arresting cell cycle and inducing cell apoptosis.

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Chen, XY; Li, H; Luo, HJ; Lin, ZX; Luo, WH or concate me.. Category: pyridine-derivatives

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Why do aromatic interactions matter of compound:65-22-5

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Bagautdinova, RH; Kibardina, LK; Pudovik, EM; Burilov, AR; Pudovik, MA or concate me.. Computed Properties of C8H10ClNO3

Recently I am researching about AMINO-ACIDS, Saw an article supported by the Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-03-00061]. Published in MAIK NAUKA/INTERPERIODICA/SPRINGER in NEW YORK ,Authors: Bagautdinova, RH; Kibardina, LK; Pudovik, EM; Burilov, AR; Pudovik, MA. The CAS is 65-22-5. Through research, I have a further understanding and discovery of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Computed Properties of C8H10ClNO3

The reactions of 4-methylpiperazin-1-amine, 2-amino- and 4-aminomethylpiperidines with pyridoxal afforded the corresponding azomethines. Their reactions with organic and inorganic acids lead to the formation of salt derivatives of pyridoxal azomethines.

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Bagautdinova, RH; Kibardina, LK; Pudovik, EM; Burilov, AR; Pudovik, MA or concate me.. Computed Properties of C8H10ClNO3

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

The Shocking Revelation of 65-22-5

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Chen, XY; Li, H; Luo, HJ; Lin, ZX; Luo, WH or concate me.. COA of Formula: C8H10ClNO3

I found the field of Pharmacology & Pharmacy very interesting. Saw the article Synthesis and Evaluation of Pyridoxal Hydrazone and Acylhydrazone Compounds as Potential Angiogenesis Inhibitors published in 2019.0. COA of Formula: C8H10ClNO3, Reprint Addresses Luo, WH (corresponding author), Shantou Univ, Coll Med, Bioanalyt Lab, Xinling Rd 22, Shantou, Guangdong, Peoples R China.. The CAS is 65-22-5. Through research, I have a further understanding and discovery of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Background/Aims: Hydrazone and acylhydrazone derivatives, which are produced from aldehyde reacting with hydrazine or acylhydrazine, have been reported to exhibit antitumor activities. However, the angionenic effects of this kind of derivatives haven’t been elucidated. Here, we synthesized 12 pyridoxal hydrazone and acylhydrazone compounds and investigated their antiangiogenic effects and the underlying mechanisms. Method: 3-(4,5-Dimethylthiazol-2-yl)-2, 5-dipheyltetrazolium bromide assay was used to screen the inhibitory effects of the synthesized compounds on endothelial cells (ECs) proliferation. The compound with best inhibitory effect was further evaluated with wound-healing assay and tube formation assay. Calcein-Am assay was carried out to determine the content of intracellular labile iron pool (LIP). Intracellular reduced glutathione (GSH) was determined by spectrophotometry. Flow cytometry was used to determine cell cycle and apoptosis. Results: Compound 10 (3-hydroxy-5-[hydroxymethyl]-2-methyl-pyridine-4-carbaldehyde-2-naphthalen-1-acetyl hydrazone) showed the best inhibitory effect on human umbilical vascular ECs proliferation, with IC50 value of 25.4 mu mol/L. It not only inhibited wound-healing and tube formation of ECs, but also decreased the content of intracellular LIP and GSH. Furthermore, it arrested ECs cycle at S phase and induced cell apoptosis. Conclusions: Compound 10 exhibits antiangiogenic effects by reducing the content of intracellular LIP and GSH, and subsequently arresting cell cycle and inducing cell apoptosis.

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Chen, XY; Li, H; Luo, HJ; Lin, ZX; Luo, WH or concate me.. COA of Formula: C8H10ClNO3

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

What kind of challenge would you like to see in a future of compound:65-22-5

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Pishchugin, FV; Tuleberdiev, IT or concate me.. Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Authors Pishchugin, FV; Tuleberdiev, IT in MAIK NAUKA/INTERPERIODICA/SPRINGER published article about in [Pishchugin, F. V.; Tuleberdiev, I. T.] Kyrgyz Natl Acad Sci, Inst Chem & Phytotechnol, Bishkek 720071, Kyrgyzstan in 2021.0, Cited 13.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5

The kinetics and mechanism of condensation of pyridoxal hydrochloride with L-alpha-asparagine, L-alpha- and D-alpha-aspartic acids are analyzed via UV spectroscopy and polarimetry. It is found that L-alpha-asparagine containing alpha-NH2 and gamma-NH2 groups interacts with pyridoxal via the gamma-NH2 group, forming Schiff bases that are resistant to chemical transformations. Rearrangement produces Schiff bases that form the cyclic structure from the amino acid moiety. L-alpha- and D-alpha-aspartic acids interacting with pyridoxal via alpha-NH2 groups create Schiff bases that form quinoid structures after elimination of alpha-hydrogen or CO2. Their subsequent hydrolysis results in pyridoxamine, alpha-ketoacids, and aldehyde acids, respectively. Schemes of the condensation mechanisms of L-alpha-asparagine, L-alpha-, D-alpha-aspartic acids with pyridoxal hydrochloride are proposed.

About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Pishchugin, FV; Tuleberdiev, IT or concate me.. Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

When did you first realize you had a special interest and talent in65-22-5

Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Chakraborty, M; Mondal, A; Chattopadhyay, SK or concate me.

Recently I am researching about 2,6-DIACETYLPYRIDINE DAP HYDRAZONES; CRYSTAL-STRUCTURES; SPECTROSCOPIC PROPERTIES; MAGNETIC-PROPERTIES; AROYL HYDRAZONES; II COMPLEXES; COPPER(II); OXIDASE; COORDINATION; MN(II), Saw an article supported by the IIEST, Shibpur; DSTDepartment of Science & Technology (India); All India Council for Technical Education (AICTE)All India Council for Technical Education (AICTE). Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Chakraborty, M; Mondal, A; Chattopadhyay, SK. The CAS is 65-22-5. Through research, I have a further understanding and discovery of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Three hydroxymethyl bridged Cu(ii) complexes of a pyridoxal Schiff base ligand 4-((E)-(2-(pyridin-2-yl)ethylimino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (LH) have been synthesized and characterized on the basis of spectroscopic, elctrochemical and structural properties. The X-ray crystal structures of the complexes reveal dual denticity of the ligand, bidenticity in the absence of a co-ligand as in complex1, and tridenticity in the presence of a co-ligand such as SCN-/N(CN)(2)(-)as in complexes2and3. The complexes, though binuclear in the solid state, exist as a monomeric unit in solution due to the exceptionally long axial Cu-O-hydroxymethyl(2.4-2.5 angstrom) bond. All three complexes show efficient catalytic activities towards the aerial oxidation of 3,5-ditertiarybutylcatechol (DTBCH2) withk(cat)values of 5.38 x 10(4)h(-1), 1.18 x 10(5)h(-1)and 1.06 x 10(5)h(-1)in methanol. Complexes1and2also act as a selective sulphide ion sensor withK(b)values of 6.6 x 10(3)M(-1)and 8.1 x 10(3)M(-1), respectively, while their respective L.O.D. values are 3.4 mu M and 3.2 mu M.

Quality Control of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Chakraborty, M; Mondal, A; Chattopadhyay, SK or concate me.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

Final Thoughts on Chemistry for 65-22-5

HPLC of Formula: C8H10ClNO3. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Song, Z; Liu, J; Hou, YX; Yuan, W; Yang, BS or concate me.

In 2019.0 SPECTROCHIM ACTA A published article about HUMAN SERUM-ALBUMIN; METAL-IONS; PSEUDOMONAS-SYRINGAE; SECONDARY STRUCTURE; COPPER PROTEINS; BINDING; STABILITY; ITC; METALLOCHAPERONES; THERMODYNAMICS in [Song, Zhen; Hou, Yuxin; Yuan, Wen] Taiyuan Normal Univ, Dept Chem, Jinzhong 030619, Peoples R China; [Yang, Binsheng] Shanxi Univ, Key Lab Chem Biol & Mol Engn, Minist Educ, Inst Mol Sci, Taiyuan 030006, Shanxi, Peoples R China; [Liu, Jin] Chinese Peoples Armed Police Forces, Hubei Prov Corps Hosp, Wuhan 430061, Hubei, Peoples R China in 2019.0, Cited 38.0. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5. HPLC of Formula: C8H10ClNO3

The interaction between pyridoxal hydrochloride (HQ) and apoCopC was investigated using Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), circular dichroism (CD), fluorescence spectroscopy, three-dimensional (3D) fluorescence spectroscopy, fluorescence lifetime, TNS fluorescence and docking methods. FTIR, CD, TNS fluorescence and fluorescence lifetime experiments suggested that the apoCopC conformation was altered by HQ with an increase in the random coil content and a reduction in the beta-sheet content. In addition, the data from fluorescence spectroscopy, 3D fluorescence spectroscopy and molecular docking revealed that the binding site of HQ was located in the hydrophobic area of apoCopC, and a redshift of the HQ fluorescence spectra was observed. Furthermore, ITC and fluorescence quenching data manifested that the binding ratio of HQ and apoCopC was 1:1, and the forming constant was calculated to be (7.06 +/- 0.21) x 10(5) M-1. The thermodynamic parameters Delta H and Delta S suggested that the formation of a CopC-HQcomplex depended on the hydrophobic force. Furthermore, the average binding distance between tryptophan in apoCopC and HQ was determined by means of Forster non-radioactive resonance energy transfer and molecular docking. The results agreed well with each other. As a redox switch in the modulation of copper, the interaction of apoCopC with small molecules will affect the action of the redox switch. These findings could provide useful information to illustrate the copper regulation mechanism. (C) 2018 Elsevier B.V. All rights reserved.

HPLC of Formula: C8H10ClNO3. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Song, Z; Liu, J; Hou, YX; Yuan, W; Yang, BS or concate me.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem

What Kind of Chemistry Facts Are We Going to Learn About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride

Application In Synthesis of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Poladian, Q; Sahin, O; Karakurt, T; Ilhan-Ceylan, B; Kurt, Y or concate me.

Authors Poladian, Q; Sahin, O; Karakurt, T; Ilhan-Ceylan, B; Kurt, Y in PERGAMON-ELSEVIER SCIENCE LTD published article about TRANSITION-METAL-COMPLEXES; EFFECTIVE CORE POTENTIALS; GROWTH-FACTOR RECEPTOR; THIOSEMICARBAZONE DERIVATIVES; BIOLOGICAL-ACTIVITY; ANTIPROLIFERATIVE ACTIVITY; COPPER(II) COMPLEXES; LIGANDS; NICKEL(II); ANTITUMOR in [Poladian, Qumars; Ilhan-Ceylan, Berat; Kurt, Yasemin] Istanbul Univ Cerrahpasa, Engn Fac, Dept Chem, TR-34320 Istanbul, Turkey; [Sahin, Onur] Sinop Univ, Fac Hlth Sci, Dept Occupat Hlth & Safety, TR-57000 Sinop, Turkey; [Karakurt, Tuncay] Kirsehir Ahi Evran Univ, Fac Engn Architecture, Dept Chem & Proc Engn, TR-40100 Kirsehir, Turkey in 2021.0, Cited 69.0. Application In Synthesis of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. The Name is 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. Through research, I have a further understanding and discovery of 65-22-5

A new unsymmetrical N2O2-tetradentate Schiff-base complex of zinc(II) was synthesized by the template reaction of pyridoxal-S-methylthiosemicarbazone and 2-hydroxy-4-methoxy-benzaldehyde as starting compounds. S-methylthiosemicarbazone (1) and zinc(II) complex [Zn(L)CH3OH] ( 2) were characterized by elemental analysis, FT-IR, UV-visible, H-1, and C-13 NMR spectra. The molecular structure of the complex (2) was determined by single crystal X-ray diffraction technique. The structure consists of a distorted square-pyramidal geometry around the central metal, Zn(II). Quantum chemical calculations were carried out using density functional theory DFT/B3LYP, 6-31G (d), and LanL2DZ basis sets for theoretical characterization of the compounds. The experimental and theoretical data were compared comprehensively. The potential energy distribution (PED) analysis was performed for the assignment of vibration frequencies. In order to support in vitro studies, molecular docking studies have been carried out so that the title compound can be an inhibitor of Epidermal Growth Factor Receptor (1 m17), and the relationship between calculated HOMO energies and docking studies has been examined. In addition, the total antioxidant capacity (as TEAC value) and free radical scavenging activity of the compounds were determined by Cupric Reducing Antioxidant Capacity (CUPRAC) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) methods, respectively. (C) 2021 Elsevier Ltd. All rights reserved.

Application In Synthesis of 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride. About 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride, If you have any questions, you can contact Poladian, Q; Sahin, O; Karakurt, T; Ilhan-Ceylan, B; Kurt, Y or concate me.

Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem