Share a compound : 59105-50-9

According to the analysis of related databases, 59105-50-9, the application of this compound in the production field has become more and more popular.

Application of 59105-50-9, Adding some certain compound to certain chemical reactions, such as: 59105-50-9, name is (5-Bromopyridin-3-yl)(phenyl)methanone,molecular formula is C12H8BrNO, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 59105-50-9.

General procedure: Pd(PPh3)4 (17.3 mg, 0.015 mmol) was added to a solution of 3-benzoy-5-bromo pyridine(130.1 mg, 0.5 mmol) and aryl boronic acid (0.6 mmol) in MeOH (0.2 mL), toluene (0.8 mL),and 2 M Na2CO3 (0.2mL) under N2. The mixture was heated to 75 C for 2 h, and then cooledto room temperature and concentrated under reduced pressure. Water was added to theresidue and the aq. phase was extracted with DCM (3 × 5 mL). The combined organic layerswere washed with brine, dried over Na2SO4, and evaporated to obtain the crude product.Purification by column chromatography on silica gel afforded the desired product.

According to the analysis of related databases, 59105-50-9, the application of this compound in the production field has become more and more popular.

Reference:
Article; Fu, Yun; Sun, Jian; Molecules; vol. 24; 3; (2019);,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Brief introduction of tert-Butyl 3-bromo-6-chloropicolinate

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 1235036-15-3, tert-Butyl 3-bromo-6-chloropicolinate, other downstream synthetic routes, hurry up and to see.

Reference of 1235036-15-3, Adding some certain compound to certain chemical reactions, such as: 1235036-15-3, name is tert-Butyl 3-bromo-6-chloropicolinate,molecular formula is C10H11BrClNO2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 1235036-15-3.

To a solution of tert-butyl 3-bromo-6-chloropicolinate (5.92 g) in tetrahydrofuran (60 mL)and water (30 mL) was added the crude Example 1.20.1 (4.44 g), 1,3,5,7-tetramethyl-6-phenyl- 2,4,8-trioxa-6-phosphaadamante (1.5 g), tris(dibenzylideneacetone)dipalladium(0) (927 mg) and K3PO4(22 g). The mixture was stirred at reflux overnight, cooled, diluted with ethyl acetate (800 mL) and washed with water and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography, eluting with 20% ethyl acetate in heptane followed by 5% methanol in dichloromethane, to give the title compound. MS (ESI) m/e 531.1 (M+H)+.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 1235036-15-3, tert-Butyl 3-bromo-6-chloropicolinate, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; ABBVIE INC.; BENATUIL, Lorenzo; BRUNCKO, Milan; JUDD, Andrew, S.; LI, Yingchun; MCCLUSKEY, Andrew; PHILLIPS, Andrew, C.; PHILLIPS, Darren, C.; SEAGAL, Jane; SOUERS, Andrew, J.; (808 pag.)WO2017/214462; (2017); A2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Introduction of a new synthetic route about 62150-46-3

At the same time, in my other blogs, there are other synthetic methods of this type of compound,62150-46-3, 4-Bromopicolinamide, and friends who are interested can also refer to it.

With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.62150-46-3, name is 4-Bromopicolinamide, molecular formula is C6H5BrN2O, molecular weight is 201.0207, as common compound, the synthetic route is as follows.category: pyridine-derivatives

third step:Add water to the 50 liter reactor, sodium hydroxide, stir to reduce the temperature to 0 , add bromine, drop the temperature to minus 10 degrees.Add the amide in batches and stir for one hour.Then heat to 80 degrees for one hour.The TCL was detected until the end of the reaction, and the temperature was lowered to room temperature and centrifuged to obtain a crude product which was crystallized from toluene to give a pure product of 1.5 kg.The ratio of each raw material in the third step of Example 1 and the reaction conditions of the third step and the purity and yield of the obtained product are shown in Table 2.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,62150-46-3, 4-Bromopicolinamide, and friends who are interested can also refer to it.

Reference:
Patent; Chengdu Tong Chuangyuan Pharmaceutical Technology Co., Ltd.; Shou Yuehan; (12 pag.)CN105153023; (2018); B;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Application of 185041-05-8

Statistics shows that 185041-05-8 is playing an increasingly important role. we look forward to future research findings about Methyl 2-chloro-4-iodonicotinate.

Electric Literature of 185041-05-8, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.185041-05-8, name is Methyl 2-chloro-4-iodonicotinate, molecular formula is C7H5ClINO2, molecular weight is 297.48, as common compound, the synthetic route is as follows.

2.0 g 2-chloro-4-iodo-nicotinic acid methyl ester (6.7 mmol), (6.7 mmol) and methyl pyrrolidone (NMP) in a mixture of 0.60 g of cuprous cyanide were heated to 10 ml containing N- 130 five hours, after cooling was diluted with 50 ml of ethyl acetate, the mixture was filtered and concentrated under reduced pressure, the residual material was dissolved in 25 ml of ethyl acetate after washing twice with 10 mL of aqueous ammonia, dried over magnesium sulfate and concentrated, the residual material was purified by silica gel column chromatography (moving phase: ethyl acetate: petroleum ether = 3% to 5%), to give the desired product, 2-chloro-nicotinic acid methyl ester cyano, a white solid (1.0 g, 5.1 mmol, 56% yield).

Statistics shows that 185041-05-8 is playing an increasingly important role. we look forward to future research findings about Methyl 2-chloro-4-iodonicotinate.

Reference:
Patent; BIOGEN MA INC.; SUNESIS PHARMACEUTICALS, INC.; ARNDT, JOSEPH; CHAN, TIMOTHY; GUCKIAN, KEVIN; KUMARAVEL, GNANASAMBANDAM; LEE, WEN-CHERNG; LIN, EDWARD YIN-SHIANG; SCOTT, DANIEL; SUN, LIHONG; THOMAS, JERMAINE; VAN VLOTEN, KURT; WANG, DEPING; ZHANG, LEI; ERLANSON, DANIEL; (469 pag.)TWI525093; (2016); B;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The origin of a common compound about 3-Bromo-5-(trifluoromethyl)pyridine

According to the analysis of related databases, 436799-33-6, the application of this compound in the production field has become more and more popular.

Application of 436799-33-6, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 436799-33-6, name is 3-Bromo-5-(trifluoromethyl)pyridine, molecular formula is C6H3BrF3N, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Example 1.1.27: (5-(trifluoromethyl)pyridin-3-yl)methanamine; 3-bromo-5-(trifluoromethyl)pyridine (1.0 g, 4.42 mmol, 1 eq) was dissolved in 20 mL anhydrous DMF. The solution was degassed by bubbling through with Ar. Zn(CN)2 (0.312 g, 2.65 mmol, 0.6 eq) and Pd(PPh3)4 were added, and the resulting solution was heated to 80 0C with stirring overnight. The reaction was cooled to room temperature and diluted with Et2O. NH4OH (28%) was added with stirring and the layers were separated. The organic layer was washed with water (x3), brine (xl), and dried over Na2SO4. The inorganics were filtered off, and the reaction mixture was concentrated in vacuo. Purification via flash chromatography on silica gel yielded 0.310 g (1.95 mmol, 44% yield) of 5- (trifluoromethyl)nicotinonitrile.

According to the analysis of related databases, 436799-33-6, the application of this compound in the production field has become more and more popular.

Reference:
Patent; COMENTIS, INC.; PURDUE RESEARCH FOUNDATION; WO2009/42694; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Brief introduction of 944900-06-5

At the same time, in my other blogs, there are other synthetic methods of this type of compound,944900-06-5, 2-Chloro-6-(trifluoromethyl)nicotinaldehyde, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 944900-06-5, 2-Chloro-6-(trifluoromethyl)nicotinaldehyde, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Recommanded Product: 944900-06-5, blongs to pyridine-derivatives compound. Recommanded Product: 944900-06-5

To a stirred solution of 2-chloro-6-(trifluoromethyl)nicotinaldehyde (115 mg, 0.549 mmol) in THF (1 mL) was added dimethylamine (823 mul, 1.65 mmol). The reaction was heated to 500C and stirred for 3 hours. The reaction was loaded onto silica gel and eluted with 5% ethyl acetate/hexanes to 50% ethyl acetate/hexanes to yield the desired compound (50 mg, 0.229 mmol, 41.8 % yield).

At the same time, in my other blogs, there are other synthetic methods of this type of compound,944900-06-5, 2-Chloro-6-(trifluoromethyl)nicotinaldehyde, and friends who are interested can also refer to it.

Reference:
Patent; ARRAY BIOPHARMA INC.; COOK, Adam; HUNT, Kevin, W.; DELISLE, Robert Kirk; ROMOFF, Todd; CLARK, Christopher, T.; KIM, Ganghyeok; CORRETTE, Christopher, P.; DOHERTY, George, A.; BURGESS, Laurence, E.; WO2010/75200; (2010); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 955372-86-8

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 955372-86-8, 3-Bromo-5-fluoroisonicotinic acid.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 955372-86-8, name is 3-Bromo-5-fluoroisonicotinic acid. This compound has unique chemical properties. The synthetic route is as follows. Recommanded Product: 3-Bromo-5-fluoroisonicotinic acid

TMSCHN2 (180 mL, 360 mmol, 2 equiv) was added into a solution of 3-bromo-5- fluoroisonicotinic acid (40 g, 182 mmol, 1 equiv), THF (240 mL), and MeOH (80 mL) dropwise with stirring at 0 C under nitrogen. The resulting solution was stirred for 3 h at room temperature. The resulting mixture was concentrated under vacuum. The residue was purified by a silica gel column eluting with ethyl acetate/petroleum ether (1/9) to afford the title compound (35 g, 83%) as yellow oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 955372-86-8, 3-Bromo-5-fluoroisonicotinic acid.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; GENENTECH, INC.; PARAZA PHARMA, INC.; BEAUMIER, Francis; DERY, Martin; LAROUCHE-GAUTHIER, Robin; CHEN, Huifen; SHORE, Daniel; VILLEMURE, Elisia; VOLGRAF, Matthew; HU, Baihua; LU, Aijun; CRIDLAND, Andrew; WARD, Stuart; (212 pag.)WO2018/96159; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Share a compound : 153034-88-9

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 153034-88-9, 2-Chloro-4-iodo-3-methylpyridine.

Application of 153034-88-9, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 153034-88-9, name is 2-Chloro-4-iodo-3-methylpyridine. This compound has unique chemical properties. The synthetic route is as follows.

Step 15-1. 4-Iodo-N,N,3-trimethylpyridine-2-amine (Compound 15b) A DMF (7.9 mL) solution of 2-chloro-4-iodo-3-methylpyridine (Compound 15a, 500 mg, 1.97 mmol), N-ethyl-N-propan-2-ylpropane-2-amine (0.515 mL, 2.96 mmol), and a THF solution (2.96 mL, 5.92 mmol) of 2M dimethylamine was stirred at 130 C. for 17 h., then the solution was cooled to room temperature and formic acid (0.4 mL) was added. The solution was purified by reversed-phase chromatography (acetonitrile/water, 0.1% formic acid) to obtain the titled Compound 15b (258 mg, yield 50%) as a light brown solution.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 153034-88-9, 2-Chloro-4-iodo-3-methylpyridine.

Reference:
Patent; Chugai Seiyaku Kabushiki Kaisha; YOSHINO, Hitoshi; TSUCHIYA, Satoshi; MATSUO, Atsushi; SATO, Tsutomu; NISHIMOTO, Masahiro; OGURI, Kyoko; OGAWA, Hiroko; NISHIMURA, Yoshikazu; FURUTA, Yoshiyuki; KASHIWAGI, Hirotaka; HORI, Nobuyuki; KAMON, Takuma; SHIRAISHI, Takuya; YOSHIDA, Shoshin; KAWAI, Takahiro; TANIDA, Satoshi; AOKI, Masahide; (169 pag.)US2019/225604; (2019); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 3430-26-0

According to the analysis of related databases, 3430-26-0, the application of this compound in the production field has become more and more popular.

Electric Literature of 3430-26-0, Adding some certain compound to certain chemical reactions, such as: 3430-26-0, name is 2,5-Dibromo-4-methylpyridine,molecular formula is C6H5Br2N, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 3430-26-0.

Step A: 5-Bromo-2-iodo-4-methyl-pyridine To a solution of 2,5-dibromo-4-methylpyridine (2 g) in acetonitrile (40 ml) at room temperature under argon were added sodium iodide (4.8 g) then acetyl chloride (0.94 g). After 3 hours stirring at room temperature the white solid formed was filtered off and the filtrate was neutralized with aqueous saturated solution of sodium hydrogenocarbonate. The organic phase was dried over sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography (ethyl acetate/cyclohexane) to afford the title product as a brown solid (2.04 g). 1H-NMR (CDCl3, 400 MHz): 8.40 (s, 1H), 7.60 (s, 1H), 2.30 (s, 3H),

According to the analysis of related databases, 3430-26-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; SYNGENTA CROP PROTECTION LLC; US2012/238517; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

A new synthetic route of 77199-09-8

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 77199-09-8, Ethyl 5-bromopicolinate.

Electric Literature of 77199-09-8, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 77199-09-8, name is Ethyl 5-bromopicolinate, molecular formula is C8H8BrNO2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

General procedure: Ester (FAE, 4a-m, 2a or 2b) (500 mg scale, 1 equiv.) was dissolvedin 6 ml THF at 0 C in a 25 ml round-bottom flask. ThenNaOH(aq) (5 equiv.) was added dropwise and stirred for 15 h atroom temperature. After starting materials were consumed (byTLC), water (20 ml) was added. The reaction mixture was washedwith ethyl acetate (2 x 20 ml). The aqueous solution was acidified(pH 2-3) with 1 M HCl(aq) causing precipitation of a solid, whichwas filtered and dried under vacuum. Recrystallization in ethanolafford clean compound.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 77199-09-8, Ethyl 5-bromopicolinate.

Reference:
Article; Tung, Truong Thanh; Jakobsen, Tim Holm; Dao, Trong Tuan; Fuglsang, Anja Thoe; Givskov, Michael; Christensen, S°ren Br°gger; Nielsen, John; European Journal of Medicinal Chemistry; vol. 126; (2017); p. 1011 – 1020;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem