Introduction of a new synthetic route about 915006-52-9

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 915006-52-9, 6-Bromo-2-iodopyridin-3-amine, other downstream synthetic routes, hurry up and to see.

Application of 915006-52-9 ,Some common heterocyclic compound, 915006-52-9, molecular formula is C5H4BrIN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

15.5 g 6-Bromo-2-iodo-pyridin-3-ylamine, 5.9 ml ethyl acrylate, 2.72 g triphenylphosphine and 28.75 ml triethylamine were dissolved in 90 ml acetonitrile. An argon stream was bubbled through the reaction mixture for 10 minutes then 2.33 g palladium(ll)acetate were added and the reaction mixture stirred at 800C. The reaction mixture was filtered hot troupgh a pad of celite then the solvent was removed in vacuo.The residue was purified by chromatography on silica gel to obtain 10.2 g (E)-3-(3-Amino-6-bromo-pyridin-2-yl)-acrylic acid ethyl ester. C10H11BrN2O2 (271.12), MS(ESI+): 273.0, 271.0 (M+H+), Rf(ethyl acetate : n- heptane = 1 :2) = 0.12.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 915006-52-9, 6-Bromo-2-iodopyridin-3-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; SANOFI-AVENTIS; WO2009/149820; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

A new synthetic route of 77199-09-8

According to the analysis of related databases, 77199-09-8, the application of this compound in the production field has become more and more popular.

Related Products of 77199-09-8, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 77199-09-8, name is Ethyl 5-bromopicolinate, molecular formula is C8H8BrNO2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

(b) Preparation of ethyl 5-ethoxypyridine-2-carboxylate 3 :To a solution of ethyl 5-bromopyridine-2-carboxylate 2 (1.5 g, 6.5 mmol) in 20 mL of EtOH was added a solution of sodium (0.18 g, 7.8 mmol) in 20 mL of EtOH. The mixture was stirred at reflux for 3 h. After removal of all solvent, the residue was purified by column (2: 1 of hexane/ethyl acetate) to give ethyl 5-ethoxypyridine-2-carboxylate 3 as an oil. Yield: 0.26 g, 20%. .HNMR (CDCI3) delta (ppm): 8.38 (d, 1 H), 8.10 (d, 1 H), 8.23 (d, 1 H), 7.22 (dd, 1 H), 4.45 (m, 2 H), 4.25 (m, 1 H), 1.40 (m, 6 H).

According to the analysis of related databases, 77199-09-8, the application of this compound in the production field has become more and more popular.

Reference:
Patent; OSLO UNIVERSITY HOSPITAL HF; HOLSWORTH, Daniel; WAALER, Jo; MACHON, Ondrej; KRAUSS, Stefan; VORONKOV, Andrey Edward; GOLDING, Louise; WO2012/76898; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New learning discoveries about 2-Chloro-4-iodo-3-methylpyridine

With the rapid development of chemical substances, we look forward to future research findings about 153034-88-9.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 153034-88-9, name is 2-Chloro-4-iodo-3-methylpyridine, molecular formula is C6H5ClIN, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Product Details of 153034-88-9

General procedure: Table 2, example 4 PdOAc2 (3.4 mg, 0.015 mmol), cesium carbonate (293 mg, 0.900 mmol), and tris(4-methoxyphenyl)phosphine (12 mg, 0.033 mmol) were combined in dioxane (2 mL) and stirred for 15 min at room temperature under an atmosphere of nitrogen. Then 6-chloro-3-iodo-2-methylpyridine (76 mg, 0.30 mmol), O-benzoyl morpholine (69 mg, 0.330 mmol), methylboronic acid(20 mg, 0.33 mmol), and bicyclo[2.2.1]hept-2-ene (28 mg,0.30 mmol) were added as a solution in dioxane (2 mL) to the previously prepared solution of catalyst and base. The reaction was sealed and heated to 100C for 18 h. The reaction mixturewas cooled to room temperature and filtered through a pad of celite eluting with ethyl acetate. The eluent was concentrated and the residue was puried by silica gel chromatography (ISCO 24 gsilica cartridge; 0-30% ethyl acetate in hexanes) to provide4-(6-chloro-2,3-dimethylpyridin-4-yl)morpholine (41 mg, 60%yield) as a colorless oil

With the rapid development of chemical substances, we look forward to future research findings about 153034-88-9.

Reference:
Article; Wilson, Jonathan E.; Tetrahedron Letters; vol. 57; 46; (2016); p. 5053 – 5056;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 1018505-59-3

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1018505-59-3, its application will become more common.

Related Products of 1018505-59-3, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 1018505-59-3 as follows.

General procedure: Pd2(dba)3 (86.4mg, 0.09mmol) and Xant-phos (109.2mg, 0.19mmol) were added under N2 to a solution of 154 1E (290.0mg, 0.94mmol), INT-7 (228.6mg, 1.04mmol), and 152 potassium phosphate (400.5mg, 1.88mmol) in 111 1,4-dioxane (10mL). Then the mixture was reacted in the microwave at 150C for 1h. The mixture was cooled to RT, filtered, diluted with water (10mL), and extracted with DCM (10mL×3). The combined organic layers were washed with brine (30mL), dried over anhydrous Na2SO4, concentrated under a vacuum, and purified by preparative thin-layer chromatography to obtain 157 compound 1 (140.3mg; yield, 30%) as a yellow solid.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1018505-59-3, its application will become more common.

Reference:
Article; Yin, Lei; Li, Heng; Liu, Wenjian; Yao, Zhenglin; Cheng, Zhenzhen; Zhang, Huabei; Zou, Hui; European Journal of Medicinal Chemistry; vol. 144; (2018); p. 1 – 28;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Some scientific research about 1018505-59-3

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 1018505-59-3, 5-(4-Ethylpiperazin-1-yl)pyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Reference of 1018505-59-3 ,Some common heterocyclic compound, 1018505-59-3, molecular formula is C11H18N4, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: Pd2(dba)3 (86.4mg, 0.09mmol) and Xant-phos (109.2mg, 0.19mmol) were added under N2 to a solution of 154 1E (290.0mg, 0.94mmol), INT-7 (228.6mg, 1.04mmol), and 152 potassium phosphate (400.5mg, 1.88mmol) in 111 1,4-dioxane (10mL). Then the mixture was reacted in the microwave at 150C for 1h. The mixture was cooled to RT, filtered, diluted with water (10mL), and extracted with DCM (10mL×3). The combined organic layers were washed with brine (30mL), dried over anhydrous Na2SO4, concentrated under a vacuum, and purified by preparative thin-layer chromatography to obtain 157 compound 1 (140.3mg; yield, 30%) as a yellow solid.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 1018505-59-3, 5-(4-Ethylpiperazin-1-yl)pyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Article; Yin, Lei; Li, Heng; Liu, Wenjian; Yao, Zhenglin; Cheng, Zhenzhen; Zhang, Huabei; Zou, Hui; European Journal of Medicinal Chemistry; vol. 144; (2018); p. 1 – 28;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 2-((2-Chloro-4-nitrophenoxy)methyl)pyridine

At the same time, in my other blogs, there are other synthetic methods of this type of compound,179687-79-7, 2-((2-Chloro-4-nitrophenoxy)methyl)pyridine, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 179687-79-7, 2-((2-Chloro-4-nitrophenoxy)methyl)pyridine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Quality Control of 2-((2-Chloro-4-nitrophenoxy)methyl)pyridine, blongs to pyridine-derivatives compound. Quality Control of 2-((2-Chloro-4-nitrophenoxy)methyl)pyridine

Preparation of 3-chloro-4-(2-pyridylmethoxy)aniline from the nitrobenzene product of Example 1 was accomplished with catalytic hydrogenation using platinum on carbon. A typical hydrogenation was done using 6 volumes of THF, 2% by weight of 5% Pt/C (50% water wet), at 25 psi and at 25-30 C. for approximately 4-6 hours. The reaction is slightly exothermic and the temperature will rise to about 30-35 C. Cooling is necessary to maintain the temperature below 30 C. As a specific example, a mixture of 3-chloro-4-(2-pyridylmethoxy)nitrobenzene (0.15 kg, 0.57 mole) and 2% (w/w) of 5% Pt/C (6.0 g) in tetrahydrofuran (0.90 L) was hydrogenated at 25 psi for at least 5 hours. The mixture was filtered through a celite pad and washed with tetrahydrofuran (0.60 L). The filtrate was distilled to a volume of about 0.75 L and ethanol (1.12 L) was added. Distillation was continued to a volume of about 0.75 L and ethanol (2.85 L) was added. The mixture may be used ?as is? in the step of Example 3 below. ; Performing the hydrogenation in isopropyl alcohol (IPA), methanol (MeOH), or ethanol (EtOH) may result in the product being contaminated with late eluting impurity that partially precipitates out on standing in solution. It was found that performing the hydrogenation in a solvent where both the product and starting material are soluble, such as tetrahydrofuran (THF), resulted in greater product purity and required much less solvent. Thus, THF is a preferred solvent for this step. Experimental results showing the effect of different reaction conditions are shown in Table 2. For the larger scale runs, the first aniline intermediate was not isolated (?NI?) before proceeding with the next step. TABLE 2 Hydrogenation to Form First Aniline Intermediate 5% Scale (g) Pt/C** Solvent Vol Time (h) Yield (%) 2.0 1 IPA 50 3 79.6 18 2.0 5 EtOH 60 3100* 10 1 THF 10 4 94.5 7 10 1 EtOH 10 3 95.6 30 1.05 THF 6.5 12 96.3 14 100 2 THF 6 4.5 97.1 400 2 THF 6 4 NI 500 2 THF 6 4 NI 100 2 THF 6 5 NI 150 2 THF 6 5 NI 7 *Solid impurities noted after reaction completion. **percent by weight of starting material.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,179687-79-7, 2-((2-Chloro-4-nitrophenoxy)methyl)pyridine, and friends who are interested can also refer to it.

Reference:
Patent; WYETH; US2006/270668; (2006); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

A new synthetic route of 3-Bromo-2-methoxy-4-methylpyridine

The synthetic route of 717843-51-1 has been constantly updated, and we look forward to future research findings.

Electric Literature of 717843-51-1 , The common heterocyclic compound, 717843-51-1, name is 3-Bromo-2-methoxy-4-methylpyridine, molecular formula is C7H8BrNO, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Step 4: To a solution of compound 95 (990 mg, 4.9 mmol) in benzene (33 mL) was added NBS (870 mg, 4.9 mmol) followed by AIBN (40 mg, 0.25 mmol). The mixture was placed in an 80 C oil bath. After six hours, the reaction was diluted with EtOAc, washed with 1 M Na2C03 and brine, dried over MgS04, filtered and concentrated. The crude product was purified by flash chromatography eluting with heptanes/EtOAc (0-10%) to afford compound 96 as an oil (669 mg, 70% pure by NMR). 1H NMR (400 MHz, DMSO-d6) delta 8.14 (d, J = 5.0 Hz, 1 H), 7.22 (d, J = 5.0 Hz, 1 H), 4.68 (s, 2 H), 3.93 (s, 3 H).

The synthetic route of 717843-51-1 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; PFIZER INC.; BAILEY, Simon; BURKE, Benjamin, Joseph; COLLINS, Michael, Raymond; CUI, Jingrong, Jean; DEAL, Judith, Gail; HOFFMAN, Robert, Louis; HUANG, Qinhua; JOHNSON, Ted, William; KANIA, Robert, Steven; KATH, John, Charles; LE, Phuong, Thi, Quy; MCTIGUE, Michele, Ann; PALMER, Cynthia, Louise; RICHARDSON, Paul, Francis; SACH, Neal, William; WO2013/132376; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The origin of a common compound about 2-Bromo-4-nitropyridine

Statistics shows that 6945-67-1 is playing an increasingly important role. we look forward to future research findings about 2-Bromo-4-nitropyridine.

Application of 6945-67-1, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.6945-67-1, name is 2-Bromo-4-nitropyridine, molecular formula is C5H3BrN2O2, molecular weight is 202.99, as common compound, the synthetic route is as follows.

Take 2-bromo-4-aminopyridine (8.651g, 50.0mmol), triethylamine (15.179g, 150mmol)And dichloromethane (50mL) placed in the reaction flask, weigh di-tert-butyl carbonate(16.369g, 75.0mmol), added to the above reaction flask at 0 , add,The reaction was stirred at 40C for 4h. After the reaction is complete, cool to room temperature,Add saturated sodium bicarbonate solution and dichloromethane to the reaction system, extract,Take the organic phase and dry with anhydrous sodium sulfate. After concentration under reduced pressure and purification by column chromatography, the title compound was obtained.

Statistics shows that 6945-67-1 is playing an increasingly important role. we look forward to future research findings about 2-Bromo-4-nitropyridine.

Reference:
Patent; Nanjing Shenghe Pharmaceutical Co., Ltd.; Wang Yong; Zhao Liwen; Wang Yazhou; Quan Xu; Liu Haixuan; Wang Xiaowei; Zhang Yan; Li Xue; Cao Chen; Guo Zhuang; Lv Kunzhi; Wang Hai; Zheng Guochuang; (126 pag.)CN111196804; (2020); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New downstream synthetic route of 5-Bromo-2-chloro-4-methoxypyridine

According to the analysis of related databases, 880870-13-3, the application of this compound in the production field has become more and more popular.

Application of 880870-13-3, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 880870-13-3, name is 5-Bromo-2-chloro-4-methoxypyridine. This compound has unique chemical properties. The synthetic route is as follows.

A solution of hydrogen chloride in 1,4-dioxane (4M, 0.020ml) was added to the solution of 5-bromo-2-chloro-4-methoxypyridine (0.18 g, 0.81 mmol) and methyl hydrazinecarboxyiate (0.30 g, 3.34 mmol) in ethanol (5 mi). The reaction mixture was heated in microwave reactor at 160 C for 9 hours. The mixture was cooled and evaporated to dryness. Purification of the evaporation residue by preparative reverse phase HPLC afforded 4.8 mg of 6-bromo-7-methoxy-[l ,2,4]triazolo[4,3-a]pyridin-3(2H)-one. 1H NMR (DMSO-de) delta: 12.24 (br s, 1H), 8.08 (s, 1H), 6.63 (s, 1H), 3.87 (s, 3H).

According to the analysis of related databases, 880870-13-3, the application of this compound in the production field has become more and more popular.

Reference:
Patent; RICHTER GEDEON NYRT.; ORION CORPORATION; HAIKARAINEN, Anssi; JOUBERT, Muriel; KAROLYI, Benedek; KAeSNAeNEN, Heikki; PASSINIEMI, Mikko; POHJAKALLIO, Antti; SZANTO, Gabor; VAISMAA, Matti; (97 pag.)WO2019/43635; (2019); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 2,6-Dichloro-4-methyl-3-nitropyridine

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 60010-03-9, 2,6-Dichloro-4-methyl-3-nitropyridine, other downstream synthetic routes, hurry up and to see.

Electric Literature of 60010-03-9 ,Some common heterocyclic compound, 60010-03-9, molecular formula is C6H4Cl2N2O2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Methylamine (2M in THF, 1.5 L, 3000 mmol) was added to a solution of 2,6-dichloro-4-methyl-3- nitropyridine (Step 1 of Example 1, 295 g, 1425 mmol) THF (4.5 L) while maintaining the temperature at 20C. The reaction mixture stirred for 2 h at rt, diluted with EtOAc (3 L) andwater (5 L). The organic layer was separated and the aqueous layer was extracted with EtOAc (2 L). The combined organic extracts were washed with brine (5 L), dried (Na2504), filtered and the filtrate was evaporated in vacuo at 30C to afford the title compound (285 g, purity 81%) as yellow crystals. Rt: 1.07 mm (LC-MS 1); MS mlz: 201.0 [M] (LC-MS 1).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 60010-03-9, 2,6-Dichloro-4-methyl-3-nitropyridine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; NOVARTIS AG; BLANK, Jutta; BOLD, Guido; BORDAS, Vincent; COTESTA, Simona; GUAGNANO, Vito; RUeEGER, Heinrich; VAUPEL, Andrea; WO2015/75665; (2015); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem